The inner radius of a pipe is \( 2 \cdot 1 \mathrm{~cm} \). How much water can 12 m of this pipe hold ?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find out how much water the pipe can hold, we start with the formula for the volume of a cylinder: \( V = \pi r^2 h \), where \( r \) is the inner radius and \( h \) is the height (or length) of the cylinder. Given that the inner radius is \( 2 \cdot 1 \mathrm{~cm} = 2 \mathrm{~cm} \) and the length of the pipe is \( 12 \mathrm{~m} = 1200 \mathrm{~cm} \), we can substitute these values into the formula. Calculating the volume: \[ V = \pi (2)^2 (1200) = \pi (4)(1200) = 4800\pi \text{ cm}^3 \] Thus, the pipe can hold approximately \( 15079.64 \text{ cm}^3 \) of water, or about 15.08 liters! To put it in perspective, that’s enough to fill about 30 soda cans! So next time you open a cold drink, think about how much water is flowing through those pipes!