Pregunta
upstudy study bank question image url

QUESTION 2 2.1 \begin{tabular}{l} Boitumelo invests an amount of R28 000 for a period of 7 years. For the first two \\ years the interest was \( 12 \% \) p.a. compounded semi-annually. The interest was then \\ changed to \( 10 \% \) p.a. compounded quarterly. \\ Determine the value of the investment after the 7 -year period. \\ 2.2 \\ \( \begin{array}{l}\text { Convert an interest rate of } 10 \% \text { p.a. compounded quarterly to an annual effective } \\ \text { interest rate. } \\ \text { A lawnmower was traded in for R236 after } 10 \text { years. The depreciation was } \\ \text { calculated at } 9,2 \% \text { p.a. on a straight-line basis. } \\ \text { Determine the cost of the lawnmower } 10 \text { years ago. }\end{array} \) \\ \hline 10\( ] \)\end{tabular}

Ask by Byrd Wade. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 7 years, the investment grows to approximately R57,923.45. An interest rate of 10% per annum compounded quarterly is equivalent to an effective annual rate of 10.38%. Ten years ago, the lawnmower originally cost R2,950.

Solución

Certainly! Let's tackle both parts of **Question 2** step by step. --- ### **2.1 Investment Growth Calculation** **Given:** - **Initial Investment (P₁):** R28,000 - **First 2 Years:** - **Interest Rate:** 12% per annum - **Compounding Frequency:** Semi-annually (2 times a year) - **Next 5 Years:** - **Interest Rate:** 10% per annum - **Compounding Frequency:** Quarterly (4 times a year) - **Total Investment Period:** 7 years **Objective:** Determine the value of the investment after 7 years. --- **Step 1: Calculate Future Value for the First 2 Years** - **Number of Compounding Periods (n₁):** 2 years × 2 = 4 - **Interest Rate per Period (r₁):** 12% / 2 = 6% or 0.06 Using the compound interest formula: \[ A₁ = P₁ \times (1 + r₁)^{n₁} \] \[ A₁ = 28,000 \times (1 + 0.06)^4 \] \[ A₁ = 28,000 \times 1.26247696 \approx R35,349.36 \] --- **Step 2: Calculate Future Value for the Next 5 Years** - **Number of Compounding Periods (n₂):** 5 years × 4 = 20 - **Interest Rate per Period (r₂):** 10% / 4 = 2.5% or 0.025 Using the compound interest formula: \[ A₂ = A₁ \times (1 + r₂)^{n₂} \] \[ A₂ = 35,349.36 \times (1 + 0.025)^{20} \] \[ A₂ = 35,349.36 \times 1.638616 \approx R57,923.45 \] --- ****Final Value After 7 Years:** **≈ R57,923.45** --- ### **2.2 Financial Conversions and Depreciation** #### **a) Converting Nominal to Effective Annual Interest Rate** **Given:** - **Nominal Interest Rate (iₙ):** 10% per annum - **Compounding Frequency:** Quarterly (4 times a year) **Objective:** Find the **Annual Effective Interest Rate (iₑ)**. **Formula:** \[ iₑ = \left(1 + \frac{iₙ}{m}\right)^m - 1 \] Where \( m = 4 \) (quarterly) \[ iₑ = \left(1 + \frac{0.10}{4}\right)^4 - 1 = (1.025)^4 - 1 \approx 1.10381289 - 1 = 0.10381289 \text{ or } 10.38\% \] --- #### **b) Determining the Original Cost of the Lawnmower** **Given:** - **Final Value (After Depreciation):** R236 - **Depreciation Rate:** 9.2% per annum - **Depreciation Method:** Straight-line - **Time Period:** 10 years **Objective:** Find the **Initial Cost (C)** of the lawnmower. **Straight-Line Depreciation Formula:** \[ \text{Final Value} = C - (C \times d \times t) \] Where: - \( d = 0.092 \) (9.2% per annum) - \( t = 10 \) years \[ 236 = C - (C \times 0.092 \times 10) \] \[ 236 = C - 0.92C \] \[ 236 = 0.08C \] \[ C = \frac{236}{0.08} = R2,950 \] --- ****Initial Cost of the Lawnmower 10 Years Ago:** **R2,950** --- ### **Summary of Answers** - **2.1:** The investment grows to **≈ R57,923.45** after 7 years. - **2.2a:** An interest rate of **10% p.a. compounded quarterly** is equivalent to an **effective annual rate of 10.38%**. - **2.2b:** The lawnmower originally cost **R2,950** ten years ago.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Boitumelo's investment story is a classic case of the power of compound interest! In the first two years, at 12% compounded semi-annually, the interest actually compounds twice a year, so you get a little extra boost, which is fabulous for growing wealth. After that, the switch to 10% compounded quarterly means the interest continues to stack up more frequently, giving Boitumelo even more financial magic—an exciting way to see that investment flourish over time! For the lawnmower's past life, this straight-line depreciation actually means that it lost value evenly every year. With 9.2% depreciation on its initial cost over 10 years, we can quickly find that cost by working backwards from its final value of R236. This simple calculation brings the original worth to light—an intriguing glimpse into how assets shape our finances over time!

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad