Pregunta
upstudy study bank question image url

10. The lengths of two sides of a triangle are given. Find the range of possible lengths of the third side. \( \begin{array}{ll}24.5 \text { in., } 11 \mathrm{in} .,\end{array} \)

Ask by May Burns. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The third side must be greater than 13.5 inches and less than 35.5 inches.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the range of possible lengths for the third side of a triangle when two sides are given, you'll want to use the triangle inequality theorem. This theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. In this case, if you denote the lengths of the two sides as \( a = 24.5 \) inches and \( b = 11 \) inches, the length of the third side \( c \) must satisfy the following inequalities: 1. \( a + b > c \) implies \( 24.5 + 11 > c \) or \( c < 35.5 \). 2. \( a + c > b \) implies \( 24.5 + c > 11 \) or \( c > -13.5 \) (which is always true since lengths can't be negative). 3. \( b + c > a \) implies \( 11 + c > 24.5 \) or \( c > 13.5 \). Putting this together, the range for the third side \( c \) is \( 13.5 < c < 35.5 \) inches. Understanding these inequalities not only helps you in geometry but also in real-life situations such as construction and design. Whenever you're working with materials and their lengths, ensuring that they adhere to these simple rules can prevent structural failures and lead to successful projects. Just think of it as making sure your triangle is strong enough to stand proud! If you're looking to dive deeper into triangle properties, consider exploring the world of geometric constructions. There are plenty of fun experiments to do with different types of triangles (like equilateral, isosceles, and scalene) using everyday materials like string and rulers. Plus, there's an abundance of online resources and books that can enhance your understanding while you play with these geometric wonders.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad