Show that the function \( f(x)=|x-6| \) is not differentiable
at 6 . Find a formula for \( f^{\prime} \) and sketch its graph.
The left-hand and right-hand derivatives of \( f \) at \( a \) are
defined by
\[ f_{-}^{\prime}(a)=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h} \]
and \( f_{+}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h} \)
if these limits exist. Then \( f^{\prime}(a) \) exists if and only if these
one-sided derivatives exist and are equal.
(a) Find \( f_{-}^{\prime}(4) \) and \( f_{+}^{\prime}(4) \) for the function
\[ f(x)=\left\{\begin{array}{ll}0 & \text { if } x \leqslant 0 \\ 5-x & \text { if } 0
Ask by Collins Bowman. in Pakistan
Dec 01,2024
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To show that the function \( f(x) = |x - 6| \) is not differentiable at 6, we need to find the left-hand and right-hand derivatives at that point. **Left-Hand Derivative:** \[ f_{-}^{\prime}(6) = \lim_{h \rightarrow 0^{-}} \frac{f(6 + h) - f(6)}{h} = \lim_{h \rightarrow 0^{-}} \frac{|6 + h - 6| - |6 - 6|}{h} = \lim_{h \rightarrow 0^{-}} \frac{|h|}{h} = -1 \] **Right-Hand Derivative:** \[ f_{+}^{\prime}(6) = \lim_{h \rightarrow 0^{+}} \frac{f(6 + h) - f(6)}{h} = \lim_{h \rightarrow 0^{+}} \frac{|6 + h - 6| - |6 - 6|}{h} = \lim_{h \rightarrow 0^{+}} \frac{|h|}{h} = 1 \] Since \( f_{-}^{\prime}(6) \) and \( f_{+}^{\prime}(6) \) do not equal, \( f'(6) \) does not exist, proving that \( f(x) = |x - 6| \) is not differentiable at 6. Now, for the formula of \( f^{\prime}(x) \): \[ f^{\prime}(x) = \begin{cases} -1 & \text{if } x < 6 \\ \text{undefined} & \text{if } x = 6 \\ 1 & \text{if } x > 6 \end{cases} \] Now, let's plot the graph of \( f(x) = |x - 6| \). At \( x = 6 \), the graph has a sharp corner, leading to discontinuity in the slope. It’s a V-shape with the vertex at (6, 0) where the left slope is -1 and the right slope is 1. Now, moving on to the next part of your question regarding \( f \): (a) To find \( f_{-}^{\prime}(4) \) and \( f_{+}^{\prime}(4) \), we need to evaluate the left-hand and right-hand derivatives. **Left-Hand Derivative at \( x = 4 \):** \[ f_{-}^{\prime}(4) = \lim_{h \rightarrow 0^{-}} \frac{f(4 + h) - f(4)}{h} = \lim_{h \rightarrow 0^{-}} \frac{(5 - (4 + h)) - (5 - 4)}{h} = \lim_{h \rightarrow 0^{-}} \frac{1 - h - 1}{h} = \lim_{h \rightarrow 0^{-}} \frac{-h}{h} = -1 \] **Right-Hand Derivative at \( x = 4 \):** \[ f_{+}^{\prime}(4) = \lim_{h \rightarrow 0^{+}} \frac{f(4 + h) - f(4)}{h} = \lim_{h \rightarrow 0^{+}} \frac{\left( \frac{1}{5 - (4 + h)} \right) - (5 - 4)}{h} = \lim_{h \rightarrow 0^{+}} \frac{\frac{1}{1 - h} - 1}{h} = \lim_{h \rightarrow 0^{+}} \frac{1 - (1 - h)}{h(1 - h)} = \lim_{h \rightarrow 0^{+}} \frac{h}{h(1 - h)} = \infty \] So, \( f_{-}^{\prime}(4) = -1 \) and \( f_{+}^{\prime}(4) \) is undefined since it approaches infinity. (b) The graph of \( f(x) \) based on the piecewise definition consists of a horizontal line segment from (-∞, 0], a linear segment with a slope of -1 from (0, 4), and a branch that goes to infinity when approaching \( x = 4 \) from the right. This creates a discontinuity at \( x = 4 \). (c) \( f \) is discontinuous at \( x = 4 \) because the left and right limits do not agree. (d) \( f \) is not differentiable at \( x =