Pregunta
upstudy study bank question image url

Show that the function \( f(x)=|x-6| \) is not differentiable at 6 . Find a formula for \( f^{\prime} \) and sketch its graph. The left-hand and right-hand derivatives of \( f \) at \( a \) are defined by \[ f_{-}^{\prime}(a)=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h} \] and \( f_{+}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h} \) if these limits exist. Then \( f^{\prime}(a) \) exists if and only if these one-sided derivatives exist and are equal. (a) Find \( f_{-}^{\prime}(4) \) and \( f_{+}^{\prime}(4) \) for the function \[ f(x)=\left\{\begin{array}{ll}0 & \text { if } x \leqslant 0 \\ 5-x & \text { if } 0
Ask by Collins Bowman. in Pakistan
Dec 01,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = |x - 6| \) is not differentiable at \( x = 6 \). The derivative \( f'(x) \) is piecewise defined, and the function is discontinuous at \( x = 4 \) and not differentiable at \( x = 0 \) and \( x = 4 \).

Solución

To analyze the function \( f(x) = |x - 6| \), we first need to determine its differentiability at \( x = 6 \). ### Step 1: Check differentiability at \( x = 6 \) The function \( f(x) = |x - 6| \) can be expressed piecewise as: \[ f(x) = \begin{cases} 6 - x & \text{if } x < 6 \\ 0 & \text{if } x = 6 \\ x - 6 & \text{if } x > 6 \end{cases} \] To check if \( f \) is differentiable at \( x = 6 \), we need to compute the left-hand and right-hand derivatives. **Left-hand derivative at \( x = 6 \):** \[ f_{-}^{\prime}(6) = \lim_{h \to 0^{-}} \frac{f(6 + h) - f(6)}{h} = \lim_{h \to 0^{-}} \frac{(6 - (6 + h)) - 0}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1 \] **Right-hand derivative at \( x = 6 \):** \[ f_{+}^{\prime}(6) = \lim_{h \to 0^{+}} \frac{f(6 + h) - f(6)}{h} = \lim_{h \to 0^{+}} \frac{((6 + h) - 6) - 0}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1 \] Since \( f_{-}^{\prime}(6) = -1 \) and \( f_{+}^{\prime}(6) = 1 \), the one-sided derivatives are not equal. Therefore, \( f \) is not differentiable at \( x = 6 \). ### Step 2: Find the derivative \( f' \) The derivative \( f' \) can be expressed as: \[ f'(x) = \begin{cases} -1 & \text{if } x < 6 \\ \text{undefined} & \text{if } x = 6 \\ 1 & \text{if } x > 6 \end{cases} \] ### Step 3: Sketch the graph of \( f \) The graph of \( f(x) = |x - 6| \) is a V-shaped graph with a vertex at \( (6, 0) \). The left side of the graph has a slope of -1, and the right side has a slope of 1. ### Step 4: Analyze the function \( f \) given in part (a) Now, let's analyze the function given in part (a): \[ f(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 5 - x & \text{if } 0 < x < 4 \\ \frac{1}{5 - x} & \text{if } x \geq 4 \end{cases} \] **(a) Find \( f_{-}^{\prime}(4) \) and \( f_{+}^{\prime}(4) \)** **Left-hand derivative at \( x = 4 \):** \[ f_{-}^{\prime}(4) = \lim_{h \to 0^{-}} \frac{f(4 + h) - f(4)}{h} = \lim_{h \to 0^{-}} \frac{(5 - (4 + h)) - (5 - 4)}{h} = \lim_{h \to 0^{-}} \frac{(1 - h) - 1}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1 \] **Right-hand derivative at \( x = 4 \):** \[ f_{+}^{\prime}(4) = \lim_{h \to 0^{+}} \frac{f(4 + h) - f(4)}{h} = \lim_{h \to 0^{+}} \frac{\frac{1}{5 - (4 + h)} - \frac{1}{1}}{h} = \lim_{h \to 0^{+}} \frac{\frac{1 - (5 - (4 + h))}{(5 - (4 + h))}}{h} = \lim_{h \to 0^{+}} \frac{h}{h(1)(1)} = \lim_{h \to 0^{+}} \frac{1}{1} = 1 \] Thus, \( f_{-}^{\prime}(4) = -1 \) and \( f_{+}^{\prime}(4) = 1 \). ### Step 5: Sketch the graph of \( f \) The graph of \( f \) consists of three segments: 1. A horizontal line at \( y = 0 \) for \( x \leq 0 \). 2. A line with a slope of -1 from \( (0, 5) \) to \( (4, 1) \). 3. A curve \( \frac{1}{5 - x} \) for \( x \geq 4 \), which approaches infinity as \( x \) approaches 5. ### Step 6: Analyze continuity and differentiability **(c) Where is \( f \) discontinuous?** The function is continuous everywhere except at \( x = 4 \) because the left-hand limit does not equal the right-hand limit at that point. **(d) Where is \( f \) not differentiable?** The function is not differentiable at \( x = 0 \) and \( x = 4 \) because the left-hand and right-hand derivatives do not match at these points. ### Summary - \( f(x) = |x - 6| \) is not differentiable at \( x = 6 \). - The derivative \( f'(x) \) is defined piecewise. - The function \( f \) in part (a) is discontinuous at \( x = 4 \) and not differentiable at \( x = 0 \) and \( x = 4 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To show that the function \( f(x) = |x - 6| \) is not differentiable at 6, we need to find the left-hand and right-hand derivatives at that point. **Left-Hand Derivative:** \[ f_{-}^{\prime}(6) = \lim_{h \rightarrow 0^{-}} \frac{f(6 + h) - f(6)}{h} = \lim_{h \rightarrow 0^{-}} \frac{|6 + h - 6| - |6 - 6|}{h} = \lim_{h \rightarrow 0^{-}} \frac{|h|}{h} = -1 \] **Right-Hand Derivative:** \[ f_{+}^{\prime}(6) = \lim_{h \rightarrow 0^{+}} \frac{f(6 + h) - f(6)}{h} = \lim_{h \rightarrow 0^{+}} \frac{|6 + h - 6| - |6 - 6|}{h} = \lim_{h \rightarrow 0^{+}} \frac{|h|}{h} = 1 \] Since \( f_{-}^{\prime}(6) \) and \( f_{+}^{\prime}(6) \) do not equal, \( f'(6) \) does not exist, proving that \( f(x) = |x - 6| \) is not differentiable at 6. Now, for the formula of \( f^{\prime}(x) \): \[ f^{\prime}(x) = \begin{cases} -1 & \text{if } x < 6 \\ \text{undefined} & \text{if } x = 6 \\ 1 & \text{if } x > 6 \end{cases} \] Now, let's plot the graph of \( f(x) = |x - 6| \). At \( x = 6 \), the graph has a sharp corner, leading to discontinuity in the slope. It’s a V-shape with the vertex at (6, 0) where the left slope is -1 and the right slope is 1. Now, moving on to the next part of your question regarding \( f \): (a) To find \( f_{-}^{\prime}(4) \) and \( f_{+}^{\prime}(4) \), we need to evaluate the left-hand and right-hand derivatives. **Left-Hand Derivative at \( x = 4 \):** \[ f_{-}^{\prime}(4) = \lim_{h \rightarrow 0^{-}} \frac{f(4 + h) - f(4)}{h} = \lim_{h \rightarrow 0^{-}} \frac{(5 - (4 + h)) - (5 - 4)}{h} = \lim_{h \rightarrow 0^{-}} \frac{1 - h - 1}{h} = \lim_{h \rightarrow 0^{-}} \frac{-h}{h} = -1 \] **Right-Hand Derivative at \( x = 4 \):** \[ f_{+}^{\prime}(4) = \lim_{h \rightarrow 0^{+}} \frac{f(4 + h) - f(4)}{h} = \lim_{h \rightarrow 0^{+}} \frac{\left( \frac{1}{5 - (4 + h)} \right) - (5 - 4)}{h} = \lim_{h \rightarrow 0^{+}} \frac{\frac{1}{1 - h} - 1}{h} = \lim_{h \rightarrow 0^{+}} \frac{1 - (1 - h)}{h(1 - h)} = \lim_{h \rightarrow 0^{+}} \frac{h}{h(1 - h)} = \infty \] So, \( f_{-}^{\prime}(4) = -1 \) and \( f_{+}^{\prime}(4) \) is undefined since it approaches infinity. (b) The graph of \( f(x) \) based on the piecewise definition consists of a horizontal line segment from (-∞, 0], a linear segment with a slope of -1 from (0, 4), and a branch that goes to infinity when approaching \( x = 4 \) from the right. This creates a discontinuity at \( x = 4 \). (c) \( f \) is discontinuous at \( x = 4 \) because the left and right limits do not agree. (d) \( f \) is not differentiable at \( x =

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad