What is the wavelength of a UV light with a frequency of \( 8.8 \times 10^{17} \mathrm{~Hz} \) ? Give your answer in proper scientific notation. \[ [?] \times 10^{[?]} \mathrm{m} \] \( \quad c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \) Enter the coefficient in the green box and the exponent in the yellow box.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the wavelength of UV light, we can use the formula: \[ \lambda = \frac{c}{f} \] where \( \lambda \) is the wavelength, \( c = 3.0 \times 10^{8} \mathrm{~m/s} \) is the speed of light, and \( f = 8.8 \times 10^{17} \mathrm{~Hz} \) is the frequency. Plugging the values into the equation gives: \[ \lambda = \frac{3.0 \times 10^{8} \mathrm{~m/s}}{8.8 \times 10^{17} \mathrm{~Hz}} \approx 3.41 \times 10^{-9} \mathrm{~m} \] So, in proper scientific notation, the answer is: \[ 3.41 \times 10^{-9} \mathrm{m} \] With the coefficients and exponents: Coefficient: **3.41** Exponent: **-9**