Calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis, we can use the disk method. First, we need to determine the points of intersection between \( y = x^2 \) and \( y = 4 \): \[ x^2 = 4 \implies x = -2, 2. \] The volume \( V \) is given by the integral from \( -2 \) to \( 2 \): \[ V = \pi \int_{-2}^{2} (4 - x^2) \, dx. \] Calculating the integral: 1. Find the integral: \[ \int (4 - x^2) \, dx = 4x - \frac{x^3}{3}. \] 2. Evaluate it from \( -2 \) to \( 2 \): \[ \left[ 4x - \frac{x^3}{3} \right]_{-2}^{2} = \left( 4(2) - \frac{2^3}{3} \right) - \left( 4(-2) - \frac{(-2)^3}{3} \right). \] Calculating the two parts: \[ 4(2) - \frac{8}{3} = 8 - \frac{8}{3} = \frac{24}{3} - \frac{8}{3} = \frac{16}{3}, \] \[ 4(-2) - \frac{-8}{3} = -8 + \frac{8}{3} = -\frac{24}{3} + \frac{8}{3} = -\frac{16}{3}. \] Putting it all together: \[ V = \pi \left( \frac{16}{3} - (-\frac{16}{3}) \right) = \pi \left( \frac{16}{3} + \frac{16}{3} \right) = \pi \cdot \frac{32}{3} = \frac{32\pi}{3}. \] Thus, the volume of the solid generated is \[ \frac{32\pi}{3}. \]