Pregunta

Calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis.

Ask by Sullivan Bowers. in Iran
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{256}{5} \pi \) cubic units.

Solución

To calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis, we'll use the **washer method**. Here's a step-by-step solution: ### 1. **Identify the Points of Intersection** First, determine where the curves \( y = x^2 \) and \( y = 4 \) intersect: \[ x^2 = 4 \implies x = \pm 2 \] So, the region of interest is between \( x = -2 \) and \( x = 2 \). ### 2. **Set Up the Washer Method Integral** When revolving around the x-axis, the volume \( V \) can be calculated using the washer method: \[ V = \pi \int_{a}^{b} \left[ (R(x))^2 - (r(x))^2 \right] dx \] Where: - \( R(x) \) is the outer radius (distance from the x-axis to the upper curve). - \( r(x) \) is the inner radius (distance from the x-axis to the lower curve). In this case: - The **outer curve** is \( y = 4 \), so \( R(x) = 4 \). - The **inner curve** is \( y = x^2 \), so \( r(x) = x^2 \). ### 3. **Express the Integral** Substitute \( R(x) \) and \( r(x) \) into the integral: \[ V = \pi \int_{-2}^{2} \left[ 4^2 - (x^2)^2 \right] dx = \pi \int_{-2}^{2} \left[ 16 - x^4 \right] dx \] Since the integrand is even, we can simplify the calculation by integrating from 0 to 2 and then doubling the result: \[ V = 2\pi \int_{0}^{2} \left[ 16 - x^4 \right] dx \] ### 4. **Compute the Integral** Evaluate the integral: \[ \int_{0}^{2} \left[ 16 - x^4 \right] dx = \left[ 16x - \frac{x^5}{5} \right]_0^2 = \left( 16 \times 2 - \frac{32}{5} \right) = 32 - \frac{32}{5} = \frac{160 - 32}{5} = \frac{128}{5} \] ### 5. **Calculate the Volume** Multiply by \( 2\pi \): \[ V = 2\pi \times \frac{128}{5} = \frac{256}{5} \pi \] ### **Final Answer** The volume of the solid is: \[ V = \frac{256}{5} \pi \text{ cubic units} \] Answer: Its volume is 256⁄5 multiplied by π, that is V = (256⁄5) · π cubic units

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis, we can use the disk method. First, we need to determine the points of intersection between \( y = x^2 \) and \( y = 4 \): \[ x^2 = 4 \implies x = -2, 2. \] The volume \( V \) is given by the integral from \( -2 \) to \( 2 \): \[ V = \pi \int_{-2}^{2} (4 - x^2) \, dx. \] Calculating the integral: 1. Find the integral: \[ \int (4 - x^2) \, dx = 4x - \frac{x^3}{3}. \] 2. Evaluate it from \( -2 \) to \( 2 \): \[ \left[ 4x - \frac{x^3}{3} \right]_{-2}^{2} = \left( 4(2) - \frac{2^3}{3} \right) - \left( 4(-2) - \frac{(-2)^3}{3} \right). \] Calculating the two parts: \[ 4(2) - \frac{8}{3} = 8 - \frac{8}{3} = \frac{24}{3} - \frac{8}{3} = \frac{16}{3}, \] \[ 4(-2) - \frac{-8}{3} = -8 + \frac{8}{3} = -\frac{24}{3} + \frac{8}{3} = -\frac{16}{3}. \] Putting it all together: \[ V = \pi \left( \frac{16}{3} - (-\frac{16}{3}) \right) = \pi \left( \frac{16}{3} + \frac{16}{3} \right) = \pi \cdot \frac{32}{3} = \frac{32\pi}{3}. \] Thus, the volume of the solid generated is \[ \frac{32\pi}{3}. \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad