Responder
**(a) \( x = 13 \). Point: \( (13, 4) \)**
**(b) \( x = 5 \). Point: \( (5, 4) \)**
**(c) The graphs intersect at \( (1, 2) \).**
**(d) \( x = 5 \)**
**(e) \( x = -\frac{61}{191} \approx -0.319 \)**
Solución
Let's solve each part step by step.
---
### **(a) Solve \( f(x) = 4 \). What point is on the graph of \( f \)?**
**Given:**
\[ f(x) = \log_{2}(x + 3) \]
\[ f(x) = 4 \]
**Solution:**
Set \( f(x) = 4 \):
\[
\log_{2}(x + 3) = 4
\]
Convert the logarithmic equation to its exponential form:
\[
x + 3 = 2^4
\]
\[
x + 3 = 16
\]
\[
x = 16 - 3
\]
\[
x = 13
\]
**Point on the graph:**
\[
(13, 4)
\]
---
### **(b) Solve \( g(x) = 4 \). What point is on the graph of \( g \)?**
**Given:**
\[ g(x) = \log_{2}(3x + 1) \]
\[ g(x) = 4 \]
**Solution:**
Set \( g(x) = 4 \):
\[
\log_{2}(3x + 1) = 4
\]
Convert to exponential form:
\[
3x + 1 = 2^4
\]
\[
3x + 1 = 16
\]
\[
3x = 16 - 1
\]
\[
3x = 15
\]
\[
x = \frac{15}{3}
\]
\[
x = 5
\]
**Point on the graph:**
\[
(5, 4)
\]
---
### **(c) Solve \( f(x) = g(x) \). Do the graphs of \( f \) and \( g \) intersect? If so, where?**
**Given:**
\[
f(x) = \log_{2}(x + 3)
\]
\[
g(x) = \log_{2}(3x + 1)
\]
**Solution:**
Set \( f(x) = g(x) \):
\[
\log_{2}(x + 3) = \log_{2}(3x + 1)
\]
Since the logarithmic functions are equal, their arguments must be equal (assuming they are within the domain):
\[
x + 3 = 3x + 1
\]
\[
x - 3x = 1 - 3
\]
\[
-2x = -2
\]
\[
x = 1
\]
Now, find \( y \) using \( f(x) \) or \( g(x) \):
\[
f(1) = \log_{2}(1 + 3) = \log_{2}(4) = 2
\]
**Intersection Point:**
\[
(1, 2)
\]
**Conclusion:**
Yes, the graphs of \( f \) and \( g \) intersect at the point \( (1, 2) \).
---
### **(d) Solve \( (f + g)(x) = 7 \).**
**Given:**
\[
(f + g)(x) = f(x) + g(x) = \log_{2}(x + 3) + \log_{2}(3x + 1) = 7
\]
**Solution:**
Combine the logarithms using the product rule:
\[
\log_{2}\left( (x + 3)(3x + 1) \right) = 7
\]
Convert to exponential form:
\[
(x + 3)(3x + 1) = 2^7
\]
\[
(x + 3)(3x + 1) = 128
\]
Expand the left side:
\[
3x^2 + x + 9x + 3 = 128
\]
\[
3x^2 + 10x + 3 = 128
\]
Subtract 128 from both sides:
\[
3x^2 + 10x - 125 = 0
\]
Solve the quadratic equation using the quadratic formula:
\[
x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 3 \cdot (-125)}}{2 \cdot 3}
\]
\[
x = \frac{-10 \pm \sqrt{100 + 1500}}{6}
\]
\[
x = \frac{-10 \pm \sqrt{1600}}{6}
\]
\[
x = \frac{-10 \pm 40}{6}
\]
This gives two solutions:
\[
x = \frac{30}{6} = 5 \quad \text{and} \quad x = \frac{-50}{6} = -\frac{25}{3} \approx -8.333
\]
**Domain Consideration:**
- For \( f(x) = \log_{2}(x + 3) \), \( x + 3 > 0 \) ⇒ \( x > -3 \).
- For \( g(x) = \log_{2}(3x + 1) \), \( 3x + 1 > 0 \) ⇒ \( x > -\frac{1}{3} \).
**Valid Solution:**
\[
x = 5
\]
(The other solution \( x = -\frac{25}{3} \) is less than \( -\frac{1}{3} \) and thus not in the domain.)
---
### **(e) Solve \( (f - g)(x) = 6 \).**
**Given:**
\[
(f - g)(x) = f(x) - g(x) = \log_{2}(x + 3) - \log_{2}(3x + 1) = 6
\]
**Solution:**
Use the logarithmic quotient rule:
\[
\log_{2}\left( \frac{x + 3}{3x + 1} \right) = 6
\]
Convert to exponential form:
\[
\frac{x + 3}{3x + 1} = 2^6
\]
\[
\frac{x + 3}{3x + 1} = 64
\]
Multiply both sides by \( 3x + 1 \):
\[
x + 3 = 64(3x + 1)
\]
\[
x + 3 = 192x + 64
\]
Bring like terms together:
\[
x - 192x = 64 - 3
\]
\[
-191x = 61
\]
\[
x = -\frac{61}{191}
\]
\[
x \approx -0.319
\]
**Domain Consideration:**
- For \( f(x) = \log_{2}(x + 3) \), \( x > -3 \).
- For \( g(x) = \log_{2}(3x + 1) \), \( x > -\frac{1}{3} \).
Check \( x = -\frac{61}{191} \) (approximately -0.319):
\[
-0.319 > -0.333 \quad (\text{which is } -\frac{1}{3})
\]
Thus, it is within the domain.
**Solution:**
\[
x = -\frac{61}{191} \approx -0.319
\]
---
### **Summary of Solutions:**
- **(a)** \( x = 13 \). Point: \( (13, 4) \)
- **(b)** \( x = 5 \). Point: \( (5, 4) \)
- **(c)** The graphs intersect at \( (1, 2) \).
- **(d)** \( x = 5 \)
- **(e)** \( x = -\frac{61}{191} \approx -0.319 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución