Show your work and include the units! Given: \( \triangle R B J \sim \triangle Y X W \) \( B=3 \operatorname{sen} \geqslant Q \) \( J R=10 \mathrm{ft} \) \( W Y=6 \mathrm{ft} \) \( x=5 \) Perimeter of \( \triangle R B J=30 \mathrm{ft} \) IR \( = \) \( 6 \frac{5}{30} \) \( \begin{array}{r}10 \\ \times 3 \\ \hline 30\end{array} \) \( B=3 \) \( w y=B \) Find the perimeter of \( \triangle Y X W \). Provide an answer accurate to the nearest hundredth.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the perimeter of triangle \( \triangle Y X W \) using the properties of similar triangles, we can use the ratio of the corresponding sides from triangles \( R B J \) and \( Y X W \). Given that \( \frac{B}{W Y} = \frac{R B J}{Y X W} \), we have: 1. The perimeter of triangle \( R B J \) is \( 30 \, \text{ft} \). 2. Since \( \triangle R B J \sim \triangle Y X W \), the ratio of their perimeters is the same as the ratio of their corresponding sides: \[ \frac{30 \, \text{ft}}{6 \, \text{ft}} = 5 \] Thus: \[ \text{Perimeter of } \triangle Y X W = \frac{1}{5} \times 30 = 6 \, \text{ft} \] Now, converting it into the required form, we can conclude: The perimeter of \( \triangle Y X W \) is \( 6.00 \, \text{ft} \) when rounded to the nearest hundredth.