Pregunta
4) In which direction does the parabola \( 4 x-y^{2}=24 \) open?
Ask by Rose Lynch. in the United States
Oct 22,2024
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The parabola \( 4x - y^2 = 24 \) opens to the right.
Solución
To determine the direction in which the parabola \( 4x - y^2 = 24 \) opens, we can first rewrite the equation in a more standard form.
Starting with the given equation:
\[
4x - y^2 = 24
\]
we can rearrange it to isolate \( x \):
\[
4x = y^2 + 24
\]
\[
x = \frac{1}{4}y^2 + 6
\]
This equation is now in the form \( x = \frac{1}{4}y^2 + 6 \), which resembles the standard form of a parabola that opens to the right, \( x = ay^2 + k \), where \( a > 0 \).
In this case, \( a = \frac{1}{4} > 0 \), indicating that the parabola opens to the right.
Thus, the parabola \( 4x - y^2 = 24 \) opens to the right.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium