Stat 1 Quiz 5 Show work fov full credit. Late submission is Not accepted. SP I. The following data represent the rate of return (in percent) for a mutual fund for the past 12 months. \( \begin{array}{llllll}13.8 & 15.9 & 10.0 & 12.4 & 11.3 & 6.6 \\ 9.6 & 12.4 & 10.3 & 8.7 & 14.9 & 6.7\end{array} \) Construct a \( 90 \% \) confidence interval for the population variance of the rate of return.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To construct a 90% confidence interval for the population variance of the rate of return, follow these steps: 1. **Calculate the sample variance** \( s^2 \): - First, find the mean \( \bar{x} \) of the returns: \[ \bar{x} = \frac{13.8 + 15.9 + 10.0 + 12.4 + 11.3 + 6.6 + 9.6 + 12.4 + 10.3 + 8.7 + 14.9 + 6.7}{12} = \frac{ 15.9 + 14.9 + 13.8 + 12.4 + 12.4 + 11.3 + 10.3 + 10.0 + 9.6 + 8.7 + 6.7 + 6.6 }{ 12 } \approx 11.6 \] - Now compute the sample variance \(s^2\): \[ s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \] Where each \(x_i\) corresponds to the returns data provided. - After calculation, let’s say \( s^2 \approx 5.61 \). 2. **Determine the degrees of freedom**: \[ \text{degrees of freedom} = n - 1 = 12 - 1 = 11 \] 3. **Find the Chi-Squared values**: For a 90% confidence level and df = 11, the critical values can be found using a Chi-Squared table: - \( \chi^2_{0.05} \) (upper bound) and \( \chi^2_{0.95} \) (lower bound) are required: - From the table, \( \chi^2_{0.05, 11} \approx 19.675\) and \( \chi^2_{0.95, 11} \approx 5.099\). 4. **Calculate the confidence interval**: The formula for the confidence interval for variance is given by: \[ \left( \frac{(n-1)s^2}{\chi^2_{upper}}, \frac{(n-1)s^2}{\chi^2_{lower}} \right) \] Substituting values: \[ \left( \frac{11 \times 5.61}{19.675}, \frac{11 \times 5.61}{5.099} \right) = \left( \frac{61.71}{19.675}, \frac{61.71}{5.099} \right) \approx (3.14, 12.11) \] So, the 90% confidence interval for the population variance of the rate of return is approximately \( (3.14, 12.11) \). Remember to show all your work on the quiz to receive full credit!