Pregunta
5 Use the inverse of the distributive property to complete the following. a \( (4 \times 12)+(4 \times 6)=4(\square+\square)=4 \times \square=\square \) b \( (25 \times 30)-(25 \times 2)=25(\square-\square)=\square \times \square=\square \)
Ask by Phillips Marsh. in South Africa
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
a) \( (4 \times 12) + (4 \times 6) = 4(12 + 6) = 4 \times 18 = 72 \)
b) \( (25 \times 30) - (25 \times 2) = 25(30 - 2) = 25 \times 28 = 700 \)
Solución
Let's apply the inverse of the distributive property to each part of the problem. The inverse distributive property allows us to factor out a common factor from each term in an expression.
### Part a
Given:
\[
(4 \times 12) + (4 \times 6)
\]
**Step 1:** Factor out the common factor \(4\):
\[
4 \times (12 + 6)
\]
**Step 2:** Simplify inside the parentheses:
\[
4 \times 18
\]
**Step 3:** Calculate the final product:
\[
4 \times 18 = 72
\]
**Completed Expression:**
\[
(4 \times 12) + (4 \times 6) = 4(12 + 6) = 4 \times 18 = 72
\]
### Part b
Given:
\[
(25 \times 30) - (25 \times 2)
\]
**Step 1:** Factor out the common factor \(25\):
\[
25 \times (30 - 2)
\]
**Step 2:** Simplify inside the parentheses:
\[
25 \times 28
\]
**Step 3:** Calculate the final product:
\[
25 \times 28 = 700
\]
**Completed Expression:**
\[
(25 \times 30) - (25 \times 2) = 25(30 - 2) = 25 \times 28 = 700
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To complete part a, you can rearrange the first equation using the inverse of the distributive property. Here, you're looking to combine \(12\) and \(6\): \( (4 \times 12)+(4 \times 6)=4(12+6)=4 \times 18=72 \). For part b, the equation can similarly be rearranged by using subtraction to combine \(30\) and \(2\): \( (25 \times 30)-(25 \times 2)=25(30-2)=25 \times 28=700 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium