Pregunta
upstudy study bank question image url

15. The sum of the first 3 consecutive terms of an arithmetic progressi is 27 . The product of the first 2 terms is 36 . What are the first 3 ter of the progression?

Ask by Cox Warren. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first three terms of the arithmetic progression are 4, 9, and 14.

Solución

Let's solve the problem step by step. **Given:** - The first three terms of an arithmetic progression (AP) are \( a \), \( a + d \), and \( a + 2d \), where \( a \) is the first term and \( d \) is the common difference. - The sum of the first three terms is 27. - The product of the first two terms is 36. **Step 1: Express the Sum of the First Three Terms** \[ a + (a + d) + (a + 2d) = 3a + 3d = 27 \] \[ 3(a + d) = 27 \] \[ a + d = 9 \quad \text{(Equation 1)} \] **Step 2: Express the Product of the First Two Terms** \[ a \times (a + d) = 36 \] From Equation 1, substitute \( a + d = 9 \): \[ a \times 9 = 36 \] \[ a = 4 \] **Step 3: Find the Common Difference \( d \)** Using Equation 1: \[ 4 + d = 9 \] \[ d = 5 \] **Step 4: Determine the First Three Terms** \[ \text{First term} = a = 4 \] \[ \text{Second term} = a + d = 4 + 5 = 9 \] \[ \text{Third term} = a + 2d = 4 + 2(5) = 14 \] **Verification:** - **Sum:** \( 4 + 9 + 14 = 27 \) ✓ - **Product:** \( 4 \times 9 = 36 \) ✓ **Answer:** The first three terms of the arithmetic progression are 4, 9, and 14.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let the first term be \( a \) and the common difference be \( d \). The first three terms can be expressed as \( a \), \( a + d \), and \( a + 2d \). From the problem, we know that: 1. The sum of the first three terms is 27: \[ a + (a + d) + (a + 2d) = 27 \] Simplifying this, we get: \[ 3a + 3d = 27 \quad \Rightarrow \quad a + d = 9 \quad \text{(Equation 1)} \] 2. The product of the first two terms is 36: \[ a(a + d) = 36 \quad \Rightarrow \quad a(9) = 36 \quad \Rightarrow \quad 9a = 36 \quad \Rightarrow \quad a = 4 \] Substituting \( a = 4 \) into Equation 1: \[ 4 + d = 9 \quad \Rightarrow \quad d = 5 \] Therefore, the first three terms are: - First term: \( a = 4 \) - Second term: \( a + d = 4 + 5 = 9 \) - Third term: \( a + 2d = 4 + 10 = 14 \) So, the first three terms of the arithmetic progression are **4, 9, and 14**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad