Pregunta
upstudy study bank question image url

9 Given that the equation of a curve is \( y=\frac{10}{x}-x \), find the coordinates of the points on the curve at which the gradient is \( -\frac{7}{2} \).

Ask by Burton Huff. in Singapore
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The points on the curve where the gradient is \( -\frac{7}{2} \) are (2, 3) and (–2, –3).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the points on the curve where the gradient is \(-\frac{7}{2}\), we first need to determine the derivative of the function \(y = \frac{10}{x} - x\). Calculating the derivative: \[ y' = -\frac{10}{x^2} - 1 \] Now, we set this equal to \(-\frac{7}{2}\): \[ -\frac{10}{x^2} - 1 = -\frac{7}{2} \] Rearranging gives: \[ -\frac{10}{x^2} = -\frac{7}{2} + 1 \quad \Rightarrow \quad -\frac{10}{x^2} = -\frac{5}{2} \] Multiplying both sides by -1: \[ \frac{10}{x^2} = \frac{5}{2} \] Cross-multiplying gives: \[ 10 \cdot 2 = 5x^2 \quad \Rightarrow \quad 20 = 5x^2 \] Dividing by 5: \[ 4 = x^2 \quad \Rightarrow \quad x = 2 \text{ or } x = -2 \] Now, we substitute \(x = 2\) and \(x = -2\) back into the original equation to find the corresponding \(y\) values: For \(x = 2\): \[ y = \frac{10}{2} - 2 = 5 - 2 = 3 \quad \Rightarrow \quad (2, 3) \] For \(x = -2\): \[ y = \frac{10}{-2} - (-2) = -5 + 2 = -3 \quad \Rightarrow \quad (-2, -3) \] Thus, the coordinates of the points on the curve where the gradient is \(-\frac{7}{2}\) are \((2, 3)\) and \((-2, -3)\).

preguntas relacionadas

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad