Find the exact value of the indicated trigonometric function, using the given information. \( \sin \theta \) if \( \cos \theta=\frac{3}{5} \); terminal side of \( \theta \) in Quadrant । \( \sin \theta=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the exact value of \( \sin \theta \) given that \( \cos \theta = \frac{3}{5} \) and that \( \theta \) is in Quadrant I, we can use the Pythagorean identity, which states that \( \sin^2 \theta + \cos^2 \theta = 1 \). Substituting the value of \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \] This simplifies to: \[ \sin^2 \theta + \frac{9}{25} = 1 \] Now, subtract \( \frac{9}{25} \) from both sides: \[ \sin^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root of both sides, since \( \theta \) is in Quadrant I (where sine is positive): \[ \sin \theta = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Thus, the value of \( \sin \theta \) is \( \frac{4}{5} \).