Pregunta
Rewrite the equation by completing the square. \( x^{2}-6 x-16=0 \) \( (x+\square)^{2}=\square \)
Ask by Mathis Hammond. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
(x - 3)^2 = 25
\]
Solución
To rewrite the equation \( x^{2} - 6x - 16 = 0 \) by completing the square, follow these steps:
1. **Move the constant term to the other side:**
\[
x^{2} - 6x = 16
\]
2. **Complete the square for the quadratic expression on the left:**
- Take half of the coefficient of \( x \), which is \( -6 \), resulting in \( -3 \).
- Square this value: \( (-3)^2 = 9 \).
- Add this square to both sides of the equation:
\[
x^{2} - 6x + 9 = 16 + 9
\]
3. **Simplify both sides:**
\[
(x - 3)^2 = 25
\]
So, the equation rewritten by completing the square is:
\[
(x - 3)^2 = 25
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To rewrite the equation by completing the square, start with the quadratic equation \( x^{2} - 6x - 16 = 0 \). Move the constant to the other side: \( x^{2} - 6x = 16 \). Now, to complete the square, take half of the coefficient of \( x \) (which is -6), square it, and add it to both sides. Half of -6 is -3, and squaring it gives 9. Then, we get: \( x^{2} - 6x + 9 = 16 + 9 \) This simplifies to: \( (x - 3)^{2} = 25 \) So, the final equation is: \( (x - 3)^{2} = 25 \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium