Pregunta
upstudy study bank question image url

2. Converting the following recurring decimals to common fractions in the simplest form: \( \begin{array}{lll}\text { (d) } 0,3 \dot{6} & \text { (e) } 0,01 \dot{6} & \text { (f) } 1,2 \dot{4}\end{array} \)

Ask by Riley Wagner. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \dfrac{11}{30}, \dfrac{1}{60}, \dfrac{56}{45} \]

Solución

To convert the given recurring decimals to common fractions in their simplest form, we'll use algebraic methods. Let's address each part separately: ### (d) \( 0.\overline{3}6 \) **Interpretation:** The notation \( 0,\dot{3}6 \) typically means that the digit "6" is recurring after the digit "3". So, the decimal is \( 0.3666\ldots \). **Conversion Steps:** 1. Let \( x = 0.3666\ldots \). 2. Multiply both sides by 10 to shift the decimal point: \[ 10x = 3.6666\ldots \] 3. Subtract the original equation from this new equation: \[ 10x - x = 3.6666\ldots - 0.3666\ldots \] \[ 9x = 3.3 \] 4. Solve for \( x \): \[ x = \frac{3.3}{9} = \frac{33}{90} \] 5. Simplify the fraction: \[ \frac{33}{90} = \frac{11}{30} \] **Answer:** \[ \boxed{\dfrac{11}{30}} \] --- ### (e) \( 0.0\overline{1}6 \) **Interpretation:** The notation \( 0,01\dot{6} \) indicates that the digit "6" is recurring after "01". So, the decimal is \( 0.01666\ldots \). **Conversion Steps:** 1. Let \( x = 0.01666\ldots \). 2. Multiply both sides by 1000 to shift the decimal point: \[ 1000x = 16.6666\ldots \] 3. Multiply by 10 to create another equation: \[ 10x = 0.16666\ldots \] 4. Subtract the second equation from the first: \[ 1000x - 10x = 16.6666\ldots - 0.16666\ldots \] \[ 990x = 16.5 \] 5. Solve for \( x \): \[ x = \frac{16.5}{990} = \frac{165}{9900} = \frac{11}{660} = \frac{1}{60} \] **Answer:** \[ \boxed{\dfrac{1}{60}} \] --- ### (f) \( 1.2\overline{4} \) **Interpretation:** The notation \( 1,2\dot{4} \) signifies that the digit "4" is recurring after "2". So, the decimal is \( 1.24444\ldots \). **Conversion Steps:** 1. Let \( x = 1.24444\ldots \). 2. Subtract the integer part: \[ x - 1 = 0.24444\ldots \] 3. Let \( y = 0.24444\ldots \). 4. Multiply \( y \) by 10: \[ 10y = 2.4444\ldots \] 5. Subtract the original \( y \) from this: \[ 10y - y = 2.4444\ldots - 0.24444\ldots \] \[ 9y = 2.2 \] 6. Solve for \( y \): \[ y = \frac{2.2}{9} = \frac{22}{90} = \frac{11}{45} \] 7. Add back the integer part: \[ x = 1 + \frac{11}{45} = \frac{45}{45} + \frac{11}{45} = \frac{56}{45} \] **Answer:** \[ \boxed{\dfrac{56}{45}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To convert \(0,3\dot{6}\) to a fraction, let \(x = 0,3\dot{6}\). This can be represented as \(x = 0,36666...\). By multiplying both sides by 10, we get \(10x = 3,6666...\). Now subtract \(x\) from \(10x\): \[ 10x - x = 3,6666... - 0,36666... \] \[ 9x = 3,3 \] Converting \(3,3\) to a fraction gives \(\frac{33}{10}\). Thus, \(x = \frac{\frac{33}{10}}{9} = \frac{33}{90}\), which simplifies to \(\frac{11}{30}\). For \(0,01\dot{6}\), let \(y = 0,01\dot{6}\), or \(y = 0,016666...\). By multiplying both sides by 100, we have \(100y = 1,6666...\). Subtracting \(y\) results in: \[ 100y - y = 1,6666... - 0,01666... \] \[ 99y = 1,65 \] Converting \(1,65\) to a fraction gives \(\frac{165}{100}\), so: \[ y = \frac{\frac{165}{100}}{99} = \frac{165}{9900} \] This fraction simplifies to \(\frac{11}{660}\). Lastly, for \(1,2\dot{4}\), let \(z = 1,2\dot{4}\), or \(z = 1,24444...\). Multiplying by 10 gives us \(10z = 12,4444...\). Subtracting gives: \[ 10z - z = 12,4444... - 1,24444... \] \[ 9z = 11,2 \] This converts \(11,2\) into a fraction, which is \(\frac{112}{10}\), leading to: \[ z = \frac{\frac{112}{10}}{9} = \frac{112}{90} \] Thus, after simplification, you get \(z = \frac{56}{45}\).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad