Pregunta
e the imaginary number \( i \) to rewrite the expression below as a complex number. Simplify radicals. \( -4-\sqrt{-29} \)
Ask by Griffiths Barnett. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression \(-4 - \sqrt{-29}\) as a complex number is \(-4 - i\sqrt{29}\).
Solución
To rewrite the expression \(-4 - \sqrt{-29}\) as a complex number, we can use the imaginary unit \(i\), where \(i = \sqrt{-1}\).
First, express \(\sqrt{-29}\) in terms of \(i\):
\[
\sqrt{-29} = \sqrt{29} \cdot \sqrt{-1} = \sqrt{29} \cdot i = i\sqrt{29}
\]
Now, substitute this back into the original expression:
\[
-4 - \sqrt{-29} = -4 - i\sqrt{29}
\]
So, the expression \(-4 - \sqrt{-29}\) as a complex number is:
\[
-4 - i\sqrt{29}
\]
**Final Answer:**
After simplifying, the complex number is –4 minus √29 times i. Thus,
–4 − i √29
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To rewrite the expression \(-4 - \sqrt{-29}\) as a complex number, we first recognize that \(\sqrt{-29}\) can be expressed in terms of the imaginary unit \(i\). The square root of a negative number introduces \(i\). Thus, we can rewrite \(\sqrt{-29}\) as: \[ \sqrt{-29} = i\sqrt{29} \] Now substituting this back into the original expression, we get: \[ -4 - \sqrt{-29} = -4 - i\sqrt{29} \] Therefore, the expression simplifies to: \[ -4 - i\sqrt{29} \] This is the complex number form of the expression!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium