Pregunta
upstudy study bank question image url

1. Solve the following system by graphing. \( \begin{array}{l}x+2 y=4 \\ 3 x+y=-3\end{array} \)

Ask by Ramos Craig. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the system is \( x = -2 \) and \( y = 3 \).

Solución

To solve the system of equations by graphing: \[ \begin{cases} x + 2y = 4 \\ 3x + y = -3 \end{cases} \] we'll find the equations of both lines in slope-intercept form (**y = mx + b**) and then determine their point of intersection. ### Step 1: Rewrite Both Equations in Slope-Intercept Form **First Equation:** \[ x + 2y = 4 \] Solve for **y**: \[ 2y = -x + 4 \\ y = -\frac{1}{2}x + 2 \] **Second Equation:** \[ 3x + y = -3 \] Solve for **y**: \[ y = -3x - 3 \] ### Step 2: Graph Both Lines **First Line (\( y = -\frac{1}{2}x + 2 \)):** - **Y-intercept (0, 2):** When \( x = 0 \), \( y = 2 \). - **Slope (-1/2):** For every 2 units you move right on the x-axis, move 1 unit down on the y-axis. **Second Line (\( y = -3x - 3 \)):** - **Y-intercept (0, -3):** When \( x = 0 \), \( y = -3 \). - **Slope (-3):** For every 1 unit you move right on the x-axis, move 3 units down on the y-axis. ### Step 3: Find the Point of Intersection To find where the two lines intersect, set the equations equal to each other: \[ -\frac{1}{2}x + 2 = -3x - 3 \] **Solve for x:** \[ -\frac{1}{2}x + 3x = -3 - 2 \\ \frac{5}{2}x = -5 \\ x = -5 \times \frac{2}{5} \\ x = -2 \] **Now, solve for y using one of the equations:** \[ y = -3(-2) - 3 \\ y = 6 - 3 \\ y = 3 \] ### Step 4: Solution The two lines intersect at the point **(-2, 3)**. This is the solution to the system of equations. ### Visualization If you were to graph the lines, they would cross at the point \((-2, 3)\), confirming that this is the unique solution to the system. **Graph Representation:** ``` y | 6 | 5 | 4 | * (0,4) 3 | \ 2 | * \ 1 | \ 0 |---------*-------- x -1| \ -2| \ -3|------------* (-2,3) -4| ``` *(Note: This is a simplified text representation. For accurate graphing, using graph paper or a graphing tool/software is recommended.)*

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system by graphing, start by rearranging both equations into slope-intercept form (y = mx + b). For the first equation \(x + 2y = 4\), isolate \(y\) to get \(y = 2 - \frac{1}{2}x\). For the second equation \(3x + y = -3\), rearrange it to \(y = -3 - 3x\). Now, plot both lines on the same graph: the first has a y-intercept of 2 and a slope of -1/2, while the second crosses at -3 with a slope of -3. The point where the lines intersect is the solution to the system. Once you have graphed both lines, the intersection point reveals the solution to the system of equations. In this case, observe where the two lines cross—this point is often clearer with graph paper or graphing software. Double-check your plot to confirm accurately. If you graphed correctly, you'll see they intersect at the point \((-3, 4)\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad