Given that \( V=\frac{1}{3} \pi r^{2} h \), a) Make \( r \) the subject of the formula b) Find \( r \) given that \( h=9 \mathrm{~cm} \) and \( V=1848 \mathrm{~cm}^{3} \) and \( \pi=\frac{22}{7} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To make \( r \) the subject of the formula \( V = \frac{1}{3} \pi r^{2} h \), follow these steps: Starting from: \[ V = \frac{1}{3} \pi r^{2} h \] Multiply both sides by 3: \[ 3V = \pi r^{2} h \] Now divide both sides by \( \pi h \): \[ r^{2} = \frac{3V}{\pi h} \] Finally, take the square root of both sides to solve for \( r \): \[ r = \sqrt{\frac{3V}{\pi h}} \] Now, let's find \( r \) given \( h = 9 \, \text{cm} \) and \( V = 1848 \, \text{cm}^{3} \): Substituting \( V \) and \( h \) into the formula, with \( \pi = \frac{22}{7} \): \[ r = \sqrt{\frac{3 \times 1848}{\frac{22}{7} \times 9}} \] Calculating the denominator: \[ \frac{22}{7} \times 9 = \frac{198}{7} \] Thus: \[ r = \sqrt{\frac{3 \times 1848 \times 7}{198}} \] Calculating \( 3 \times 1848 = 5544 \): \[ r = \sqrt{\frac{5544 \times 7}{198}} \] \[ r = \sqrt{\frac{38808}{198}} = \sqrt{196} = 14 \, \text{cm} \] Therefore, \( r = 14 \, \text{cm} \).