Pregunta
4. Multiple Choice 1 point 4. Greg is making a rectangular garden. He has purchased 84 feet of fencing. What length \( (\mathrm{L}) \) and width \( (\mathrm{W}) \) will maximize the area of a garden with a perimeter of 84 feet? \( \mathrm{L}=64 \mathrm{ft}, \mathrm{W}=20 \mathrm{ft} \). \( \mathrm{L}=32 \mathrm{ft}, \mathrm{W}=10 \mathrm{ft} \). \( \mathrm{L}=42 \mathrm{ft}, \mathrm{W}=42 \mathrm{ft} \). \( \mathrm{L}=21 \mathrm{ft}, \mathrm{W}=21 \mathrm{ft} \).
Ask by Vaughn Pena. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The garden with the largest area is \( \mathrm{L}=21 \mathrm{ft}, \mathrm{W}=21 \mathrm{ft} \).
Solución
To determine which dimensions maximize the area of Greg's rectangular garden with a perimeter of 84 feet, let's analyze the options:
1. **\( \mathrm{L}=64 \mathrm{ft}, \mathrm{W}=20 \mathrm{ft} \)**
- **Perimeter**: \( 2 \times 64 + 2 \times 20 = 128 + 40 = 168 \) ft *(Exceeds 84 ft)*
2. **\( \mathrm{L}=32 \mathrm{ft}, \mathrm{W}=10 \mathrm{ft} \)**
- **Perimeter**: \( 2 \times 32 + 2 \times 10 = 64 + 20 = 84 \) ft
- **Area**: \( 32 \times 10 = 320 \) sq ft
3. **\( \mathrm{L}=42 \mathrm{ft}, \mathrm{W}=42 \mathrm{ft} \)**
- **Perimeter**: \( 2 \times 42 + 2 \times 42 = 168 \) ft *(Exceeds 84 ft)*
4. **\( \mathrm{L}=21 \mathrm{ft}, \mathrm{W}=21 \mathrm{ft} \)**
- **Perimeter**: \( 2 \times 21 + 2 \times 21 = 84 \) ft
- **Area**: \( 21 \times 21 = 441 \) sq ft
The **maximum area** is achieved when the garden is a square, which in this case is **21 ft by 21 ft**.
**Answer:** \( \mathrm{L}=21 \mathrm{ft}, \mathrm{W}=21 \mathrm{ft} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To maximize the area of a rectangular garden given a fixed perimeter, the garden should actually be shaped like a square! With a perimeter of 84 feet, each side of the square garden would measure 21 feet. So, the optimal dimensions would be L = 21 ft and W = 21 ft, providing the largest area possible. It's interesting to note that this principle applies to many real-world situations, such as architecture and landscaping, where maximizing space effectively is crucial. So next time you're planning a project, remember: square is sometimes the way to go!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium