Pregunta
upstudy study bank question image url

How many terms of each the following geometric series must be added to obtain the given sum? \( \begin{array}{ll}\text { (1) } 2+12+72+\ldots=18662 & \text { (2) } 8+\frac{8}{3}+\frac{8}{9}+\ldots=\frac{8744}{729} \\ \text { (3) }-4+16-64+\ldots=52428 & \text { (4) } \frac{3}{4}-\frac{3}{8}+\frac{3}{16}-\ldots=\frac{513}{1024}\end{array} \)

Ask by Davies Washington. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the number of terms needed in each geometric series to reach the given sum: 1. **6 terms** are needed for the first series. 2. **7 terms** are needed for the second series. 3. **8 terms** are needed for the third series. 4. **9 terms** are needed for the fourth series. **Summary:** - (1) 6 terms - (2) 7 terms - (3) 8 terms - (4) 9 terms

Solución

To determine the number of terms needed in each geometric series to achieve the given sum, we'll use the formula for the sum of the first \( n \) terms of a geometric series: \[ S_n = a \frac{r^n - 1}{r - 1} \] where: - \( a \) is the first term, - \( r \) is the common ratio, - \( S_n \) is the sum of the first \( n \) terms. Let's analyze each series individually. --- ### **(1) \( 2 + 12 + 72 + \ldots = 18,662 \)** - **First term (\( a \))**: 2 - **Common ratio (\( r \))**: \( \frac{12}{2} = 6 \) Using the sum formula: \[ 2 \frac{6^n - 1}{6 - 1} = 18,662 \\ \Rightarrow \frac{2(6^n - 1)}{5} = 18,662 \\ \Rightarrow 6^n - 1 = 46,656 \\ \Rightarrow 6^n = 46,656 \\ \Rightarrow 6^6 = 46,656 \] Thus, **\( n = 6 \)**. --- ### **(2) \( 8 + \frac{8}{3} + \frac{8}{9} + \ldots = \frac{8,744}{729} \)** - **First term (\( a \))**: 8 - **Common ratio (\( r \))**: \( \frac{8/3}{8} = \frac{1}{3} \) Using the sum formula: \[ 8 \frac{1 - (\frac{1}{3})^n}{1 - \frac{1}{3}} = \frac{8,744}{729} \\ \Rightarrow 12 \left(1 - \left(\frac{1}{3}\right)^n\right) = \frac{8,744}{729} \\ \Rightarrow \left(\frac{1}{3}\right)^n = \frac{1}{2,187} = \frac{1}{3^7} \\ \Rightarrow n = 7 \] Thus, **\( n = 7 \)**. --- ### **(3) \( -4 + 16 - 64 + \ldots = 52,428 \)** - **First term (\( a \))**: -4 - **Common ratio (\( r \))**: \( \frac{16}{-4} = -4 \) Using the sum formula: \[ -4 \frac{(-4)^n - 1}{-4 - 1} = 52,428 \\ \Rightarrow \frac{4((-4)^n - 1)}{5} = 52,428 \\ \Rightarrow (-4)^n = 65,536 \\ \Rightarrow 4^n = 65,536 \\ \Rightarrow 4^8 = 65,536 \\ \Rightarrow n = 8 \] Thus, **\( n = 8 \)**. --- ### **(4) \( \frac{3}{4} - \frac{3}{8} + \frac{3}{16} - \ldots = \frac{513}{1,024} \)** - **First term (\( a \))**: \( \frac{3}{4} \) - **Common ratio (\( r \))**: \( -\frac{1}{2} \) Using the sum formula: \[ \frac{3}{4} \frac{1 - \left(-\frac{1}{2}\right)^n}{1 - \left(-\frac{1}{2}\right)} = \frac{513}{1,024} \\ \Rightarrow \frac{1}{2} \left(1 - \left(-\frac{1}{2}\right)^n\right) = \frac{513}{1,024} \\ \Rightarrow \left(-\frac{1}{2}\right)^n = -\frac{1}{512} \\ \Rightarrow n = 9 \] Thus, **\( n = 9 \)**. --- ### **Summary of Results:** 1. **6 terms** 2. **7 terms** 3. **8 terms** 4. **9 terms** **Answer Summary:** Problem (1) requires 6 terms; (2) 7 terms; (3) 8 terms; and (4) 9 terms must be added.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how many terms of each geometric series must be added to obtain the given sum, we can use the formula for the sum of a finite geometric series: \[ S_n = a \frac{1 - r^n}{1 - r} \] where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Let's analyze each series one by one: 1. **For the series \( 2 + 12 + 72 + \ldots = 18662 \)**: - First term \( a = 2 \) - The common ratio \( r = \frac{12}{2} = 6 \) - We set up the equation: \[ 18662 = 2 \frac{1 - 6^n}{1 - 6} \] Simplifying gives: \[ 18662 = 2 \frac{1 - 6^n}{-5} \quad \Rightarrow \quad -93310 = 1 - 6^n \quad \Rightarrow \quad 6^n = 93311 \] Taking logarithm, we find \( n \). 2. **For the series \( 8 + \frac{8}{3} + \frac{8}{9} + \ldots = \frac{8744}{729} \)**: - First term \( a = 8 \) - The common ratio \( r = \frac{\frac{8}{3}}{8} = \frac{1}{3} \) - Set the equation: \[ \frac{8744}{729} = 8 \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} \quad \Rightarrow \quad \frac{8744}{729} = 8 \frac{1 - \left(\frac{1}{3}\right)^n}{\frac{2}{3}} \] This leads to solving for \( n \). 3. **For the series \( -4 + 16 - 64 + \ldots = 52428 \)**: - First term \( a = -4 \) - The common ratio \( r = -\frac{16}{-4} = 4 \) - We set up: \[ 52428 = -4 \frac{1 - 4^n}{1 - 4} \] Simplifying gives: \[ 52428 = -4 \frac{1 - 4^n}{-3} \quad \Rightarrow \quad 52428 = \frac{4(1 - 4^n)}{3} \] This equation results in solving for \( n \). 4. **For the series \( \frac{3}{4} - \frac{3}{8} + \frac{3}{16} - \ldots = \frac{513}{1024} \)**: - First term \( a = \frac{3}{4} \) - The common ratio \( r = -\frac{1}{2} \) - The equation is: \[ \frac{513}{1024} = \frac{3}{4} \frac{1 - \left(-\frac{1}{2}\right)^n}{1 - (-\frac{1}{2})} \quad \Rightarrow \quad \frac{513}{1024} = \frac{3}{4} \frac{1 - \left(-\frac{1}{2}\right)^n}{\frac{3}{2}} \] Solve for \( n \) from here. Once you calculate \( n \) for each equation, you'll find how many terms must be included to achieve the specified sums. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad