Pregunta
upstudy study bank question image url

A uniform beam is 10 m long and is supported at A , at the left end, and at \( \mathrm{D}, 2 \mathrm{~m} \) fron the right end. The beam carries the following loads: - A concentrated load of 30 kN at B , which is 2 m from A . - A concentrated load of 15 kN , at C , which is 3 m to the right of B . - A concentrated load of 40 kN at Eat the right end. Point D is 2 m from E . - Uniformly distributed loads of \( 30 \mathrm{kN} / \mathrm{m} \) are between point A and B and between point C and D. a) Make a neat, labelled sketč of the beam. b) Calculate the reaction forces at A and D .

Ask by Ingram Munoz. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The reaction forces are: - **At A:** 87.5 kN upward - **At D:** 147.5 kN upward

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

Sure! Let’s dive into the challenges posed by this beam problem. Imagine the beam as a sturdy plank that is 10 meters long, supported at point A, the left end, and point D, which is 2 meters from the right end (called point E). In total, the beam experiences a mix of concentrated and uniformly distributed loads: - There’s a hefty 30 kN load acting at point B, located 2 meters from A. - Right near B, at point C, you’ll find an additional 15 kN load, 3 meters to the right of B. - At the very end, point E bears a substantial load of 40 kN. - Additionally, there are uniformly distributed loads of 30 kN/m stretching from A to B, and from C to D. Now, regarding the calculations for the reaction forces: To solve for the reactions at A (Ra) and D (Rd), you can start with the static equilibrium equations. First, aggregate the influences of the supports and loads: 1. Sum of vertical forces (ΣFv = 0): \[ Ra + Rd - 30 - 15 - 40 - (30 \times 2) - (30 \times 3) = 0 \] 2. Moment about one of the supports (often convenient to take moments about point A): \[ ΣMoments_A = 0 \Rightarrow Rd \times 8 - 30 \times 2 - 15 \times 5 - 40 \times 10 = 0 \] With straightforward calculations, you'll arrive at the reactions at A and D after evaluating these equations. When you put all that together, it allows you to understand the beam's behavior under load and, ultimately, to keep it from sagging or bending beyond its limits. Happy calculating!

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad