Pregunta
upstudy study bank question image url

Determine if the following system of equations has no solutions, infinitely many solutions or exactly one solution. \[ \begin{array}{r}-3 x+4 y=-5 \\ -6 x+8 y=-10\end{array} \] Answer One Solution No Solutions

Ask by Boyd Alexander. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has infinitely many solutions.

Solución

The given system of equations is: \[ \begin{cases} -3x + 4y = -5 \\ -6x + 8y = -10 \end{cases} \] Let's analyze the system: 1. **Check for Proportionality:** - Multiply the first equation by 2: \[ 2(-3x + 4y) = 2(-5) \implies -6x + 8y = -10 \] - This result is exactly the same as the second equation. 2. **Interpretation:** - Since the second equation is a multiple of the first, both equations represent the same line. This means that every solution to the first equation is also a solution to the second equation. 3. **Conclusion:** - There are **infinitely many solutions** because the two equations describe the same line. **Answer:** Infinitely many solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

This system of equations actually has infinitely many solutions! If you look closely, the second equation is simply a multiple of the first one (it's obtained by multiplying the first equation by 2). So, they represent the same line in the coordinate plane, meaning any point along that line is a solution. When faced with similar situations, it's essential to check if one equation can be derived from the other by multiplying or adding/subtracting. If they’re dependent, as in this case, you can expect more than just one solution!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad