Pregunta
upstudy study bank question image url

Two balls are taken at the same time from a bag containing three black, three yellow and three red balls. (i) Find the probability that both balls are red. (i)

Ask by Hanson Schmidt. in Ireland
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that both balls are red is \(\frac{1}{12}\).

Solución

To find the probability that both balls drawn are red, we'll follow these steps: ### **Given:** - Total balls in the bag: - Black balls = 3 - Yellow balls = 3 - Red balls = 3 - Total number of balls = 3 + 3 + 3 = **9** ### **Step 1: Calculate the Total Number of Ways to Choose 2 Balls** The total number of ways to choose 2 balls out of 9 is given by the combination formula: \[ \text{Total combinations} = C(9, 2) = \frac{9!}{2!(9-2)!} = \frac{9 \times 8}{2 \times 1} = 36 \] ### **Step 2: Calculate the Number of Favorable Ways (Both Balls are Red)** There are 3 red balls. The number of ways to choose 2 red balls out of these 3 is: \[ \text{Red combinations} = C(3, 2) = \frac{3!}{2!(3-2)!} = \frac{3 \times 2}{2 \times 1} = 3 \] ### **Step 3: Calculate the Probability** The probability \( P \) that both balls drawn are red is the ratio of the favorable combinations to the total combinations: \[ P(\text{both red}) = \frac{\text{Red combinations}}{\text{Total combinations}} = \frac{3}{36} = \frac{1}{12} \] ### **Final Answer:** The probability that both balls are red is \(\frac{1}{12}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that both balls drawn are red, first calculate the total number of ways to select 2 balls from the 9 balls available (3 black, 3 yellow, and 3 red). This is given by the combination formula C(n, k) = n! / (k!(n-k)!), so C(9, 2) = 36. Next, compute the number of ways to choose 2 red balls from the 3 available, which is C(3, 2) = 3. Now, the probability is the number of successful outcomes divided by the total number of outcomes: P(both red) = Number of ways to choose 2 red / Total ways to choose 2 = 3 / 36 = 1/12. The final answer is: Probability = 1/12.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad