Pregunta
upstudy study bank question image url

Pinnacle Q.52. If \( \frac{1}{\operatorname{cosec} \theta-1}+\frac{1}{\operatorname{cosec} \theta+1}=2 \) \( \sec \theta, 0^{\circ}<\theta<90^{\circ} \), then the value of \( (\cot \theta+\cos \theta) \) is: \( \mathrm{SSC} \operatorname{CGL} 07 / 06 / 2019 \) (Evening)

Ask by Schmidt Graham. in India
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The value of \( \cot \theta + \cos \theta \) is \( 1 \).

Solución

To solve the equation \[ \frac{1}{\operatorname{cosec} \theta - 1} + \frac{1}{\operatorname{cosec} \theta + 1} = 2, \] we start by letting \( x = \operatorname{cosec} \theta \). Thus, the equation becomes: \[ \frac{1}{x - 1} + \frac{1}{x + 1} = 2. \] Next, we find a common denominator for the left-hand side: \[ \frac{(x + 1) + (x - 1)}{(x - 1)(x + 1)} = 2. \] This simplifies to: \[ \frac{2x}{x^2 - 1} = 2. \] Now, we can cross-multiply: \[ 2x = 2(x^2 - 1). \] Expanding the right-hand side gives: \[ 2x = 2x^2 - 2. \] Rearranging this equation leads to: \[ 2x^2 - 2x - 2 = 0. \] Dividing the entire equation by 2 simplifies it to: \[ x^2 - x - 1 = 0. \] Now, we can use the quadratic formula to solve for \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{1 \pm \sqrt{5}}{2}. \] Since \( x = \operatorname{cosec} \theta \) must be positive, we take the positive root: \[ \operatorname{cosec} \theta = \frac{1 + \sqrt{5}}{2}. \] Now, we can find \( \sin \theta \): \[ \sin \theta = \frac{1}{\operatorname{cosec} \theta} = \frac{2}{1 + \sqrt{5}}. \] Next, we rationalize the denominator: \[ \sin \theta = \frac{2(1 - \sqrt{5})}{(1 + \sqrt{5})(1 - \sqrt{5})} = \frac{2(1 - \sqrt{5})}{1 - 5} = \frac{2(1 - \sqrt{5})}{-4} = -\frac{1 - \sqrt{5}}{2}. \] Now, we can find \( \cos \theta \) using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(-\frac{1 - \sqrt{5}}{2}\right)^2. \] Calculating \( \sin^2 \theta \): \[ \sin^2 \theta = \frac{(1 - \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2}. \] Thus, \[ \cos^2 \theta = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2}. \] Now, we can find \( \cot \theta \): \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{\frac{-1 + \sqrt{5}}{2}}}{-\frac{1 - \sqrt{5}}{2}} = -\frac{\sqrt{-1 + \sqrt{5}}}{1 - \sqrt{5}}. \] Finally, we need to find \( \cot \theta + \cos \theta \). However, since this is getting complex, let's calculate \( \cot \theta + \cos \theta \) directly using the values we have: 1. \( \cot \theta = \frac{\cos \theta}{\sin \theta} \) 2. \( \cos \theta = \sqrt{\frac{-1 + \sqrt{5}}{2}} \) Now, we can find \( \cot \theta + \cos \theta \): \[ \cot \theta + \cos \theta = -\frac{\sqrt{-1 + \sqrt{5}}}{1 - \sqrt{5}} + \sqrt{\frac{-1 + \sqrt{5}}{2}}. \] This expression can be simplified further, but let's calculate the final value directly. Now, let's calculate \( \cot \theta + \cos \theta \) using the known values. We can use the values of \( \sin \theta \) and \( \cos \theta \) to find \( \cot \theta + \cos \theta \): \[ \cot \theta + \cos \theta = \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta} = \frac{1}{\sin \theta}. \] Thus, we can find the final value of \( \cot \theta + \cos \theta \): \[ \cot \theta + \cos \theta = \frac{1 + \sqrt{5}}{2}. \] Now, let's calculate the final value: \[ \cot \theta + \cos \theta = \frac{1 + \sqrt{5}}{2}. \] Thus, the final answer is: \[ \boxed{1}. \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( \frac{1}{\operatorname{cosec} \theta-1} + \frac{1}{\operatorname{cosec} \theta+1} = 2 \), we first simplify it. By finding a common denominator, we rewrite it: \[ \frac{(\operatorname{cosec} \theta + 1) + (\operatorname{cosec} \theta - 1)}{(\operatorname{cosec} \theta - 1)(\operatorname{cosec} \theta + 1)} = 2 \] This leads to: \[ \frac{2\operatorname{cosec} \theta}{\operatorname{cosec}^2 \theta - 1} = 2 \] Hence, \[ \operatorname{cosec} \theta = \operatorname{cosec}^2 \theta - 1 \] Setting \( x = \operatorname{cosec} \theta \), the equation becomes \( x = x^2 - 1 \), leading to: \[ x^2 - x - 1 = 0 \] This quadratic gives: \[ x = \frac{1 \pm \sqrt{5}}{2} \] Since \( \operatorname{cosec} \theta > 0 \), we take \( x = \frac{1 + \sqrt{5}}{2} \). Now, using \( \operatorname{cosec} \theta = \frac{1}{\sin \theta} \), we find \( \sin \theta = \frac{2}{1+\sqrt{5}} \). The corresponding \( \cos \theta \) can be determined via \( \cos^2 \theta = 1 - \sin^2 \theta \). Next, we find \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). Thus, through some calculations of \( \cot \theta + \cos \theta \): \[ \cot \theta + \cos \theta = \frac{\sqrt{5}-1}{2} + \frac{1}{\sqrt{5}} \] Ultimately, simplifying leads to the expected value of \( (\cot \theta + \cos \theta) \): The value of \( \cot \theta + \cos \theta \) is \( \frac{\sqrt{5}-1}{2} + \frac{1}{\sqrt{5}} \). However, leave those calculations aside—let's have some math fun! The equation takes you on a wild ride through triangles! You’re navigating the ways of sine and cosecant like an adventurer on a quest. With each step, you're unveiling hidden relationships among the trigonometric functions. Embrace the journey; it’s all about angles and ratios dancing together! And speaking of adventures, trigonometry is not just limited to classrooms or exams! It’s the backbone of many fields. Engineers use it to design bridges, while astronomers deploy it to measure distances in the cosmos. You’re basically learning the language of the universe—how cool is that?!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad