Pinnacle Q.52. If \( \frac{1}{\operatorname{cosec} \theta-1}+\frac{1}{\operatorname{cosec} \theta+1}=2 \) \( \sec \theta, 0^{\circ}<\theta<90^{\circ} \), then the value of \( (\cot \theta+\cos \theta) \) is: \( \mathrm{SSC} \operatorname{CGL} 07 / 06 / 2019 \) (Evening)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation \( \frac{1}{\operatorname{cosec} \theta-1} + \frac{1}{\operatorname{cosec} \theta+1} = 2 \), we first simplify it. By finding a common denominator, we rewrite it: \[ \frac{(\operatorname{cosec} \theta + 1) + (\operatorname{cosec} \theta - 1)}{(\operatorname{cosec} \theta - 1)(\operatorname{cosec} \theta + 1)} = 2 \] This leads to: \[ \frac{2\operatorname{cosec} \theta}{\operatorname{cosec}^2 \theta - 1} = 2 \] Hence, \[ \operatorname{cosec} \theta = \operatorname{cosec}^2 \theta - 1 \] Setting \( x = \operatorname{cosec} \theta \), the equation becomes \( x = x^2 - 1 \), leading to: \[ x^2 - x - 1 = 0 \] This quadratic gives: \[ x = \frac{1 \pm \sqrt{5}}{2} \] Since \( \operatorname{cosec} \theta > 0 \), we take \( x = \frac{1 + \sqrt{5}}{2} \). Now, using \( \operatorname{cosec} \theta = \frac{1}{\sin \theta} \), we find \( \sin \theta = \frac{2}{1+\sqrt{5}} \). The corresponding \( \cos \theta \) can be determined via \( \cos^2 \theta = 1 - \sin^2 \theta \). Next, we find \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). Thus, through some calculations of \( \cot \theta + \cos \theta \): \[ \cot \theta + \cos \theta = \frac{\sqrt{5}-1}{2} + \frac{1}{\sqrt{5}} \] Ultimately, simplifying leads to the expected value of \( (\cot \theta + \cos \theta) \): The value of \( \cot \theta + \cos \theta \) is \( \frac{\sqrt{5}-1}{2} + \frac{1}{\sqrt{5}} \). However, leave those calculations aside—let's have some math fun! The equation takes you on a wild ride through triangles! You’re navigating the ways of sine and cosecant like an adventurer on a quest. With each step, you're unveiling hidden relationships among the trigonometric functions. Embrace the journey; it’s all about angles and ratios dancing together! And speaking of adventures, trigonometry is not just limited to classrooms or exams! It’s the backbone of many fields. Engineers use it to design bridges, while astronomers deploy it to measure distances in the cosmos. You’re basically learning the language of the universe—how cool is that?!