Pregunta
upstudy study bank question image url

Last year, Mitch inherited a first-edition book from his grandfather. When he first received it, he looked online and found that the value of the book was listed at \( \$ 250 \). He checked again one year later and saw that the value has increased to \( \$ 265 \). The value of the book is expected to continue to increase over the next few years. Write an exponential equation in the form \( y=a(b)^{x} \) that can model the value of Mitch's book, \( y \), in \( x \) years. Use whole numbers, decimals, or simplified fractions for the values of a and b. \( y= \)

Ask by Moran Daniel. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( y = 250 \times (1.06)^x \)

Solución

To model the value of Mitch's book using an exponential equation of the form \( y = a(b)^x \), we'll follow these steps: 1. **Identify the Initial Value (\( a \))**: - When Mitch first received the book (consider this as \( x = 0 \) years), its value was \( \$250 \). - So, \( a = 250 \). 2. **Determine the Growth Factor (\( b \))**: - After 1 year (\( x = 1 \)), the book's value increased to \( \$265 \). - The growth factor \( b \) can be calculated using the formula: \[ b = \frac{\text{Value after 1 year}}{\text{Initial value}} = \frac{265}{250} = 1.06 \] - This means the book's value increases by 6% each year. 3. **Construct the Exponential Equation**: - Plugging \( a \) and \( b \) into the exponential form: \[ y = 250 \times (1.06)^x \] **Final Model:** \[ y = 250 \times (1.06)^x \] This equation models the value of Mitch's book \( y \) in \( x \) years, assuming the value continues to increase by 6% annually. **Answer:** \( y = 250 \times (1.06)^{\,x} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To create an exponential equation that models the value of Mitch's book, you can start with the initial value of the book when it was inherited and the value after one year. When Mitch inherited the book, its value was \( a = 250 \). After one year, the value was \( 265 \). To find the base \( b \), we need to determine the factor by which the value increased over that year. This can be calculated as: \[ b = \frac{265}{250} = 1.06 \] Thus, the exponential equation that models the value of the book after \( x \) years is: \[ y = 250(1.06)^{x} \] This equation suggests that the value of the book increases by 6% each year! 📚✨

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad