Pregunta
upstudy study bank question image url

14) An exponential function can be modeled by the function \( P=2(1.45)^{x} \). Which of the following statements is true? Select all that apply. A. \( \square \) This function models exponential growth. B. \( \square \) This function models exponential decay. C. \( \square \) The initial amount is 0.45 . D. \( \square \) The initial amount is 2 . E. \( \square \) The rate is \( 1.45 \% \). F. \( \square \) The rate is \( 45 \% \).

Ask by Hodgson Henry. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function models exponential growth, the initial amount is 2, and the growth rate is 45%.

Solución

Let's analyze the given exponential function: \[ P = 2(1.45)^x \] This function is in the form \( P = a \cdot b^x \), where: - \( a = 2 \) is the **initial amount** (value of \( P \) when \( x = 0 \)). - \( b = 1.45 \) is the **growth factor**. Now, let's evaluate each statement: **A. \( \square \) This function models exponential growth.** - **True.** Since the base \( b = 1.45 \) is greater than 1, the function represents exponential growth. **B. \( \square \) This function models exponential decay.** - **False.** Exponential decay occurs when \( 0 < b < 1 \). Here, \( b = 1.45 > 1 \), indicating growth, not decay. **C. \( \square \) The initial amount is 0.45.** - **False.** The initial amount \( a \) is 2, not 0.45. The 0.45 might be confused with the growth component of \( b \), but it does not represent the initial amount. **D. \( \square \) The initial amount is 2.** - **True.** As identified, \( a = 2 \) is the initial amount. **E. \( \square \) The rate is \( 1.45\% \).** - **False.** The growth rate is determined by \( b = 1.45 \). To find the percentage growth rate, subtract 1 from the growth factor: \( 1.45 - 1 = 0.45 \), which is 45%, not 1.45%. **F. \( \square \) The rate is \( 45\% \).** - **True.** As calculated above, the growth rate is 45%. **Summary of True Statements:** - **A. This function models exponential growth.** - **D. The initial amount is 2.** - **F. The rate is \( 45\% \).** **Final Answer:** **All statements A, D, and F are true.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

If we analyze the function \( P=2(1.45)^{x} \), we can see that it models exponential growth because the base \( 1.45 \) is greater than 1. So, each time \( x \) increases by 1, \( P \) increases by a factor of \( 1.45 \). Now for the initial amount, when \( x=0 \), we substitute and find \( P = 2(1.45)^{0} = 2(1) = 2 \). Thus, the initial amount is 2, and the growth rate can be determined by looking at \( 1.45 \) – to convert this to a percentage, we recognize that the effective growth rate is \( 0.45 \) or \( 45\% \). So, A and D are true, while E and F clarify the growth rate effectively!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad