Pregunta

2.1 Determine which term of the sequence \( 23 ; 21 ; 19 ; \ldots \)

Ask by Brewer Wells. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find which term in the sequence \( 23, 21, 19, \ldots \) is a specific number, use the formula \( a_n = 25 - 2n \). For example, to find the term equal to 19, set \( 25 - 2n = 19 \) and solve for \( n \), which gives \( n = 3 \). So, 19 is the 3rd term.

Solución

To determine which term of the sequence \( 23, 21, 19, \ldots \) corresponds to a specific value, we first need to identify the pattern of the sequence. 1. **Identify the pattern**: The sequence starts at 23 and decreases by 2 each time: - \( 23 \) (1st term) - \( 21 \) (2nd term) - \( 19 \) (3rd term) - and so on. 2. **General formula for the \( n \)-th term**: The \( n \)-th term of an arithmetic sequence can be expressed as: \[ a_n = a_1 + (n - 1) \cdot d \] where: - \( a_1 \) is the first term, - \( d \) is the common difference, - \( n \) is the term number. In this case: - \( a_1 = 23 \) - \( d = -2 \) Therefore, the formula for the \( n \)-th term becomes: \[ a_n = 23 + (n - 1)(-2) \] Simplifying this gives: \[ a_n = 23 - 2(n - 1) = 23 - 2n + 2 = 25 - 2n \] 3. **Finding a specific term**: If we want to find which term corresponds to a specific value, we can set \( a_n \) equal to that value and solve for \( n \). For example, if we want to find out which term is \( 19 \): \[ 19 = 25 - 2n \] Rearranging gives: \[ 2n = 25 - 19 \] \[ 2n = 6 \] \[ n = 3 \] Thus, the term \( 19 \) is the 3rd term of the sequence. If you have a specific value in mind that you want to check, please provide it, and I can determine which term corresponds to that value.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine which term of the sequence \(23, 21, 19, \ldots\) corresponds to a specific position, we first identify the pattern. This is an arithmetic sequence where the first term \(a_1 = 23\) and the common difference \(d = -2\). The \(n\)-th term can be found with the formula: \[ a_n = a_1 + (n-1)d \] Substituting the values gives: \[ a_n = 23 + (n-1)(-2) \] Simplifying, we get: \[ a_n = 23 - 2(n - 1) = 25 - 2n \] To find a specific term, you can plug in values for \(n\). For example, if you want to find the 5th term: \[ a_5 = 25 - 2(5) = 25 - 10 = 15 \] So, the 5th term of the sequence is 15! Keep in mind that each term gets smaller because of the negative difference.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad