Pregunta

3) Draw a graph of a quadratic function \( y=x^{2} \), labelling the axes and at least 3 points.

Ask by Hammond Mckenzie. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here is a graph of the quadratic function \( y = x^{2} \) with the axes labeled and three key points marked: ``` y | 5 + | 4 + * (2,4) | 3 + | 2 + | 1 + * (1,1) * (-1,1) | 0 +------------------------------- x -2 -1 0 1 2 ``` - **Points Plotted:** 1. \( (-1, 1) \) 2. \( (0, 0) \) 3. \( (1, 1) \) 4. \( (2, 4) \) The graph is a parabola opening upwards with its vertex at \( (0, 0) \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To properly draw the graph of the quadratic function \( y = x^{2} \), start by labeling your axes as the x-axis (horizontal) and the y-axis (vertical). The curve will be a U-shaped parabola that opens upwards. Plot at least three key points: 1. When \( x = -2 \), \( y = (-2)^{2} = 4 \) (point at (-2, 4)). 2. When \( x = 0 \), \( y = 0^{2} = 0 \) (point at (0, 0)). 3. When \( x = 2 \), \( y = (2)^{2} = 4 \) (point at (2, 4)). Highlight these points and sketch a smooth curve through them to complete your graph. Remember that the vertex is at the origin, and the symmetrical nature of the parabola makes plotting easy! The quadratic function has been around for centuries, with roots tracing back to ancient civilizations like the Babylonians who used a form of it for solving areas and problems involving squares. The term "quadratic" itself comes from the Latin word "quadratus," meaning square, reflecting the function's squared nature! This shows how maths has evolved while remaining relevant from ancient times to today. In real-world applications, quadratic functions represent various phenomena, such as projectile motion, where the path of an object in flight can be modeled by a parabolic graph. For instance, when you throw a ball, its height over time can be depicted by a quadratic function, enabling scientists and engineers to calculate trajectories and optimize performance in sports and vehicle launches! This connection between maths and motion can add excitement to your studies!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad