Pregunta
upstudy study bank question image url

Question Define \( R \) as the region bounded by the graphs of \( g(y)=3 y^{2}+1, y=-1, y=1 \), and the \( y \)-axis. Using the disk method, what is the volume of the solid of revolution generated by rotating \( R \) about the \( y \)-axis? Enter your answer in terms of \( \pi \).

Ask by Patel Macdonald. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid of revolution is \( \frac{48}{5}\pi \).

Solución

To find the volume of the solid of revolution generated by rotating the region \( R \) about the \( y \)-axis, we can use the disk method. **Step 1: Identify the Bounds and Functions** The region \( R \) is bounded by: - \( x = g(y) = 3y^2 + 1 \) - \( y = -1 \) - \( y = 1 \) - The \( y \)-axis (\( x = 0 \)) **Step 2: Set Up the Integral Using the Disk Method** When rotating about the \( y \)-axis, each horizontal slice at height \( y \) forms a disk with: - Radius \( R(y) = 3y^2 + 1 \) - Area \( A(y) = \pi [R(y)]^2 = \pi (3y^2 + 1)^2 \) The volume \( V \) is then the integral of these areas from \( y = -1 \) to \( y = 1 \): \[ V = \pi \int_{-1}^{1} (3y^2 + 1)^2 \, dy \] **Step 3: Simplify and Compute the Integral** First, expand the integrand: \[ (3y^2 + 1)^2 = 9y^4 + 6y^2 + 1 \] So the integral becomes: \[ V = \pi \int_{-1}^{1} (9y^4 + 6y^2 + 1) \, dy \] Since the integrand is even, we can simplify the computation by doubling the integral from 0 to 1: \[ V = 2\pi \int_{0}^{1} (9y^4 + 6y^2 + 1) \, dy \] Now, compute each part: \[ \int_{0}^{1} 9y^4 \, dy = 9 \left( \frac{1}{5} \right) = \frac{9}{5} \] \[ \int_{0}^{1} 6y^2 \, dy = 6 \left( \frac{1}{3} \right) = 2 \] \[ \int_{0}^{1} 1 \, dy = 1 \] Adding these results: \[ 2\pi \left( \frac{9}{5} + 2 + 1 \right) = 2\pi \left( \frac{24}{5} \right) = \frac{48}{5} \pi \] **Final Answer:** \[ \boxed{\dfrac{48}{5}\pi} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid of revolution generated by rotating the region \( R \) around the \( y \)-axis using the disk method, we will first determine the boundaries of \( R \) and then set up the integral. The function \( g(y) = 3y^2 + 1 \) describes the right boundary of the region, while the vertical lines \( y = -1 \) and \( y = 1 \) define the height of the region. The left boundary of the region is the \( y \)-axis, where \( x = 0 \). When we rotate the region \( R \) around the \( y \)-axis, the radius of the disk at a given \( y \) is given by \( g(y) \), which represents the distance from the \( y \)-axis to the curve \( g(y) \). The volume \( V \) of the solid formed is given by the formula: \[ V = \pi \int_{y=a}^{y=b} (radius)^2 \, dy \] In this case, the integral is set up as follows: \[ V = \pi \int_{y=-1}^{y=1} (3y^2 + 1)^2 \, dy \] Now, we compute the integral: 1. Expand \( (3y^2 + 1)^2 \): \[ (3y^2 + 1)^2 = 9y^4 + 6y^2 + 1 \] 2. Set up the integral: \[ V = \pi \int_{-1}^{1} (9y^4 + 6y^2 + 1) \, dy \] 3. Calculate the integral term by term: - \(\int_{-1}^{1} 9y^4 \, dy = 9 \cdot \left[ \frac{y^5}{5} \right]_{-1}^{1} = 9 \cdot \left(\frac{1}{5} - \frac{(-1)^5}{5}\right) = 9 \cdot \frac{2}{5} = \frac{18}{5}\) - \(\int_{-1}^{1} 6y^2 \, dy = 6 \cdot \left[ \frac{y^3}{3} \right]_{-1}^{1} = 6 \cdot \left(\frac{1}{3} - \frac{(-1)^3}{3}\right) = 6 \cdot \frac{2}{3} = 4\) - \(\int_{-1}^{1} 1 \, dy = [y]_{-1}^{1} = 1 - (-1) = 2\) 4. Now, combine the results: \[ V = \pi \left( \frac{18}{5} + 4 + 2 \right) = \pi \left( \frac{18}{5} + \frac{20}{5} + \frac{10}{5} \right) = \pi \left( \frac{48}{5} \right) \] Thus, the final answer for the volume of the solid of revolution generated by rotating region \( R \) about the \( y \)-axis is: \[ \boxed{\frac{48\pi}{5}} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad