Pregunta
upstudy study bank question image url

Salio in quadratic oquation by facturizing \( 4 x^{2}+4 x-3=0 \)

Ask by Salazar Moran. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = -\frac{3}{2} \) and \( x = \frac{1}{2} \).

Solución

Solve the quadratic equation by following steps: - step0: Solve by factoring: \(4x^{2}+4x-3=0\) - step1: Factor the expression: \(\left(2x-1\right)\left(2x+3\right)=0\) - step2: Separate into possible cases: \(\begin{align}&2x-1=0\\&2x+3=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=\frac{1}{2}\\&x=-\frac{3}{2}\end{align}\) - step4: Rewrite: \(x_{1}=-\frac{3}{2},x_{2}=\frac{1}{2}\) To solve the quadratic equation \( 4x^{2} + 4x - 3 = 0 \) by factoring, we can follow these steps: 1. **Identify the coefficients**: In the equation \( ax^2 + bx + c = 0 \), we have: - \( a = 4 \) - \( b = 4 \) - \( c = -3 \) 2. **Factor the quadratic**: We need to find two numbers that multiply to \( ac = 4 \times -3 = -12 \) and add to \( b = 4 \). The numbers that satisfy this are \( 6 \) and \( -2 \). 3. **Rewrite the equation**: We can rewrite the middle term using these numbers: \[ 4x^{2} + 6x - 2x - 3 = 0 \] 4. **Group the terms**: Now, we group the terms: \[ (4x^{2} + 6x) + (-2x - 3) = 0 \] 5. **Factor by grouping**: \[ 2x(2x + 3) - 1(2x + 3) = 0 \] This can be factored as: \[ (2x + 3)(2x - 1) = 0 \] 6. **Set each factor to zero**: \[ 2x + 3 = 0 \quad \text{or} \quad 2x - 1 = 0 \] 7. **Solve for \( x \)**: - From \( 2x + 3 = 0 \): \[ 2x = -3 \implies x = -\frac{3}{2} \] - From \( 2x - 1 = 0 \): \[ 2x = 1 \implies x = \frac{1}{2} \] Thus, the solutions to the equation \( 4x^{2} + 4x - 3 = 0 \) are: \[ x_{1} = -\frac{3}{2}, \quad x_{2} = \frac{1}{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To factor the quadratic equation \( 4x^2 + 4x - 3 = 0 \), we first look for two numbers that multiply to \( ac = 4 \times -3 = -12 \) and add to \( b = 4 \). The numbers 6 and -2 fit perfectly! So, we rewrite the equation as \( 4x^2 + 6x - 2x - 3 = 0 \), which we can group into \( (4x^2 + 6x) + (-2x - 3) = 0 \). This factors into \( 2x(2x + 3) - 1(2x + 3) = 0 \), leading to \( (2x + 3)(2x - 1) = 0 \). The solutions are \( x = -\frac{3}{2} \) and \( x = \frac{1}{2} \). The history of quadratic equations is quite fascinating! They date back to ancient civilizations like the Babylonians, who used geometric methods to solve problems similar to quadratic equations around 2000 BCE. Over centuries, mathematicians like Al-Khwarizmi and later Descartes formalized and simplified these methods, leading to our modern approach to solving, including factoring, completing the square, and applying the quadratic formula. It's a testament to how mathematical concepts can evolve while retaining their fundamentals!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad