Pregunta
upstudy study bank question image url

Rashon is going to invest in an account paying an interest rate of \( 6.9 \% \) compounded quarterly. How much would Rashon need to invest, to the nearest dollar, for the value of the account to reach \( \$ 20,200 \) in 13 years?

Ask by Craig Cruz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Rashon needs to invest \$8,301 initially to reach \$20,200 in 13 years.

Solución

To determine how much Rashon needs to invest initially to reach \$20,200 in 13 years with an interest rate of 6.9% compounded quarterly, we can use the **compound interest formula**: \[ FV = PV \times \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( FV \) = Future Value (\$20,200) - \( PV \) = Present Value (initial investment) - \( r \) = Annual interest rate (6.9% or 0.069) - \( n \) = Number of compounding periods per year (4 for quarterly) - \( t \) = Number of years (13) **Step-by-Step Calculation:** 1. **Identify the known values:** \[ r = 0.069, \quad n = 4, \quad t = 13, \quad FV = 20200 \] 2. **Rearrange the formula to solve for \( PV \):** \[ PV = \frac{FV}{\left(1 + \frac{r}{n}\right)^{nt}} \] 3. **Calculate the growth factor:** \[ \left(1 + \frac{0.069}{4}\right)^{4 \times 13} = \left(1 + 0.01725\right)^{52} \approx 2.4333 \] 4. **Compute the present value (\( PV \)):** \[ PV = \frac{20200}{2.4333} \approx 8301.46 \] 5. **Round to the nearest dollar:** \[ PV \approx \$8,301 \] **Conclusion:** Rashon needs to invest **\$8,301** initially to have an account value of \$20,200 in 13 years with the given interest rate and compounding frequency. **Answer:** Rashon should invest \$8,301 initially to reach a \$20,200 account value in 13 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine how much Rashon needs to invest today, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \(A\) is the amount of money accumulated after n years, including interest. - \(P\) is the principal amount (the initial amount of money). - \(r\) is the annual interest rate (decimal). - \(n\) is the number of times that interest is compounded per year. - \(t\) is the number of years the money is invested or borrowed. Given: - \(A = 20,200\) - \(r = 0.069\) (which is \(6.9\%\)) - \(n = 4\) (quarterly) - \(t = 13\) We need to solve for \(P\): \[ 20,200 = P \left(1 + \frac{0.069}{4}\right)^{4 \times 13} \] Calculating the values inside the parentheses: \[ 1 + \frac{0.069}{4} = 1 + 0.01725 = 1.01725 \] Now calculating the exponent: \[ 4 \times 13 = 52 \] So we can rewrite the equation: \[ 20,200 = P \left(1.01725^{52}\right) \] Calculating \(1.01725^{52}\): \[ 1.01725^{52} \approx 2.298471 \] Now substituting back to find \(P\): \[ 20,200 = P \times 2.298471 \] Now, solving for \(P\): \[ P = \frac{20,200}{2.298471} \approx 8,786.42 \] Therefore, Rashon needs to invest approximately \(P \approx 8,786\) dollars, rounded to the nearest dollar. So, Rashon should invest about **$8,786** today to reach his goal! --- Planting some financial seeds can pay off big in the future! Did you know that compounding interest works almost like a snowball effect? The more time your money has to grow, the larger it gets as interest adds up not just on your initial investment but on the interest already earned. If you're looking for something fun and a bit of a brain workout, check out some online compound interest calculators! They’re super handy for visualizing how different rates, times, and compounding frequencies can impact your investment. You might be surprised at what a difference a few extra years or a slightly different interest rate makes!

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad