Pregunta
upstudy study bank question image url

The sum of the first 12 terms of a geometric sequence with 10 as the first term and a common ratio of 0.3 is a.) 14.2857 b.) 7.6923 c.) 32.8719 d.) 7.0001

Ask by Clarke Lyons. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the first 12 terms is approximately 14.2857.

Solución

To find the sum of the first 12 terms of a geometric sequence, we can use the formula for the sum of a geometric series: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] where: - \( S_n \) is the sum of the first n terms - \( a \) is the first term - \( r \) is the common ratio - \( n \) is the number of terms Given: - First term (\( a \)) = 10 - Common ratio (\( r \)) = 0.3 - Number of terms (\( n \)) = 12 Substitute the given values into the formula: \[ S_{12} = \frac{10(1 - 0.3^{12})}{1 - 0.3} \] Now, we can calculate the sum of the first 12 terms of the geometric sequence. Calculate the value by following steps: - step0: Calculate: \(\frac{10\left(1-0.3^{12}\right)}{\left(1-0.3\right)}\) - step1: Remove the parentheses: \(\frac{10\left(1-0.3^{12}\right)}{1-0.3}\) - step2: Convert the expressions: \(\frac{10\left(1-\left(\frac{3}{10}\right)^{12}\right)}{1-0.3}\) - step3: Subtract the numbers: \(\frac{10\times \frac{10^{12}-3^{12}}{10^{12}}}{1-0.3}\) - step4: Multiply the numbers: \(\frac{\frac{10^{12}-3^{12}}{10^{11}}}{1-0.3}\) - step5: Subtract the numbers: \(\frac{\frac{10^{12}-3^{12}}{10^{11}}}{0.7}\) - step6: Convert the expressions: \(\frac{\frac{10^{12}-3^{12}}{10^{11}}}{\frac{7}{10}}\) - step7: Multiply by the reciprocal: \(\frac{10^{12}-3^{12}}{10^{11}}\times \frac{10}{7}\) - step8: Reduce the numbers: \(\frac{10^{12}-3^{12}}{10^{10}}\times \frac{1}{7}\) - step9: Multiply the fractions: \(\frac{10^{12}-3^{12}}{10^{10}\times 7}\) - step10: Multiply: \(\frac{10^{12}-3^{12}}{7\times 10^{10}}\) The sum of the first 12 terms of the geometric sequence is approximately 14.2857. Therefore, the correct answer is a.) 14.2857.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the sum of the first 12 terms of a geometric sequence, you can use the formula: \[ S_n = a \frac{1 - r^n}{1 - r} \] where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Here, \( a = 10 \), \( r = 0.3 \), and \( n = 12 \). Plugging in the values: \[ S_{12} = 10 \frac{1 - (0.3)^{12}}{1 - 0.3} \] Calculating \( (0.3)^{12} \) gives approximately \( 0.000031676352 \), so: \[ S_{12} = 10 \frac{1 - 0.000031676352}{0.7} \] \[ S_{12} \approx 10 \frac{0.999968323648}{0.7} \approx 10 \times 1.4285 = 14.2857 \] Thus, the correct answer is a.) 14.2857. Now, on to some engaging tidbits! Did you know that geometric sequences pop up in nature too? From the branching of trees to the arrangement of leaves and even in the way certain species breed, geometric sequences help to explain the world around us! Fun fact: The fascinating world of exponential decay is tied to geometric sequences! Radioactive substances, for instance, decay in a geometric pattern over time, decreasing by a fixed fraction in each period. Understanding these sequences not only helps in math but also in science and nature!

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad