Responder
The equivalent angles within \([0, 2π)\) are:
- (a) \( \frac{π}{5} \)
- (b) \( \frac{2π}{3} \)
- (c) \( \frac{π}{2} \)
- (d) \( \frac{5π}{3} \)
Solución
It looks like you've provided four angles expressed in terms of π. A common task with such angles is to find their **equivalent angles within the standard interval \([0, 2π)\)**. Let's go through each one step-by-step.
### (a) \( \frac{11π}{5} \)
**Standard Interval:** \([0, 2π)\)
1. **Determine how many full rotations (2π) are in the angle:**
\[
\frac{11π}{5} = 2π \times \frac{11}{10} = 2π + \frac{π}{5}
\]
2. **Subtract the full rotation:**
\[
\frac{11π}{5} - 2π = \frac{11π}{5} - \frac{10π}{5} = \frac{π}{5}
\]
**Equivalent Angle:** \( \frac{π}{5} \)
---
### (b) \( \frac{-16π}{3} \)
**Standard Interval:** \([0, 2π)\)
1. **Convert negative angle to positive by adding multiples of 2π:**
\[
\frac{-16π}{3} + 6π = \frac{-16π}{3} + \frac{18π}{3} = \frac{2π}{3}
\]
**Equivalent Angle:** \( \frac{2π}{3} \)
---
### (c) \( \frac{57π}{2} \)
**Standard Interval:** \([0, 2π)\)
1. **Determine the number of full rotations:**
\[
2π = \frac{4π}{2} \quad \text{so,} \quad \frac{57π}{2} \div \frac{4π}{2} = 14.25 \text{ rotations}
\]
2. **Subtract the full rotations (14 × 2π):**
\[
\frac{57π}{2} - 14 \times 2π = \frac{57π}{2} - \frac{56π}{2} = \frac{π}{2}
\]
**Equivalent Angle:** \( \frac{π}{2} \)
---
### (d) \( \frac{15π}{9} \)
**Simplify the Fraction:**
\[
\frac{15π}{9} = \frac{5π}{3}
\]
**Check if it's within \([0, 2π)\):**
\[
\frac{5π}{3} \approx 300° \quad \text{which is within} \quad [0, 2π)
\]
**Equivalent Angle:** \( \frac{5π}{3} \)
---
### Summary of Equivalent Angles within \([0, 2π)\):
- **(a) \( \frac{π}{5} \)**
- **(b) \( \frac{2π}{3} \)**
- **(c) \( \frac{π}{2} \)**
- **(d) \( \frac{5π}{3} \)**
If you had a different task in mind for these angles, please let me know!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución