ppose the functions \( f, g, h \) and \( \mathbb{Z} \) are defined as follows: \[ \begin{array}{l} f(x)=4 x^{2}-5 x+1 \\ g(x)=2 \sqrt{2-\frac{x}{2}}-x \\ h(x)=-\frac{1}{2} x+3 \\ l(x)=\log _{4}(x+3)-\log _{4}(x-2) \end{array} \] Whicte down \( \mathbb{D}_{f f} \) awnd solve the inequality \( f(x) \leq 0 \). Solve the equation \( g(x)=-4 \). Solve the requation \( \quad 4^{\operatorname{li}_{2}(x)}=8 \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the domain of \( f \), \( \mathbb{D}_{f} \), we need to consider that it’s a polynomial function. Therefore, \( f(x) \) is defined for all real numbers. For solving the inequality \( f(x) \leq 0 \): First, we find the roots of \( f(x) = 0 \): \[ 4x^2 - 5x + 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a=4, b=-5, c=1 \): \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \] This gives us the roots \( x = 1 \) and \( x = \frac{1}{4} \). The quadratic opens upwards (since the coefficient of \( x^2 \) is positive), so \( f(x) \leq 0 \) between the roots: \[ \frac{1}{4} \leq x \leq 1 \] Thus, the solution to the inequality \( f(x) \leq 0 \) is: \[ \mathbb{S} = \left[\frac{1}{4}, 1\right] \] For the equation \( g(x) = -4 \): \[ 2 \sqrt{2 - \frac{x}{2}} - x = -4 \] Rearranging gives: \[ 2 \sqrt{2 - \frac{x}{2}} = x - 4 \] Square both sides: \[ 4(2 - \frac{x}{2}) = (x - 4)^2 \] Expanding both sides: \[ 8 - 2x = x^2 - 8x + 16 \] Rearranging leads to: \[ x^2 - 6x + 8 = 0 \] Factoring: \[ (x - 2)(x - 4) = 0 \] This gives solutions \( x = 2 \) and \( x = 4 \). We must check both solutions in \( g(x) \): - For \( x = 2 \): \( g(2) = 2 \sqrt{2 - 1} - 2 = 0 \) (not valid). - For \( x = 4 \): \( g(4) = 2 \sqrt{2 - 2} - 4 = -4 \) (valid). The only solution is: \[ x = 4 \] For the equation \( 4^{\log_2(x)} = 8 \): We can rewrite 8 as \( 2^3 \) and \( 4 \) as \( 2^2 \): \[ (2^2)^{\log_2(x)} = 2^3 \] So: \[ 2^{2 \log_2(x)} = 2^3 \] Equating the exponents: \[ 2 \log_2(x) = 3 \quad \Rightarrow \quad \log_2(x) = \frac{3}{2} \] Converting back from logarithmic form: \[ x = 2^{\frac{3}{2}} = \sqrt{8} = 2\sqrt{2} \] The solution is: \[ x = 2\sqrt{2} \]