Pregunta
upstudy study bank question image url

ppose the functions \( f, g, h \) and \( \mathbb{Z} \) are defined as follows: \[ \begin{array}{l} f(x)=4 x^{2}-5 x+1 \\ g(x)=2 \sqrt{2-\frac{x}{2}}-x \\ h(x)=-\frac{1}{2} x+3 \\ l(x)=\log _{4}(x+3)-\log _{4}(x-2) \end{array} \] Whicte down \( \mathbb{D}_{f f} \) awnd solve the inequality \( f(x) \leq 0 \). Solve the equation \( g(x)=-4 \). Solve the requation \( \quad 4^{\operatorname{li}_{2}(x)}=8 \).

Ask by Floyd Bates. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Domain of \( f \):** All real numbers. **Solutions:** - \( f(x) \leq 0 \) when \( \frac{1}{4} \leq x \leq 1 \). - \( g(x) = -4 \) when \( x = 4 \). - \( 4^{\log_2(x)} = 8 \) when \( x = 2\sqrt{2} \).

Solución

Let's address each part of your problem step by step. ### 1. **Domain of \( f \) and Solving \( f(x) \leq 0 \)** **Function Definition:** \[ f(x) = 4x^2 - 5x + 1 \] **Domain (\( \mathbb{D}_f \)):** Since \( f(x) \) is a polynomial, it is defined for all real numbers. Thus, \[ \mathbb{D}_f = \mathbb{R} \] **Solving \( f(x) \leq 0 \):** 1. **Find the roots of the equation \( f(x) = 0 \):** \[ 4x^2 - 5x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \] So, the roots are: \[ x = 1 \quad \text{and} \quad x = \frac{1}{4} \] 2. **Determine the intervals where \( f(x) \leq 0 \):** The quadratic \( f(x) = 4x^2 - 5x + 1 \) opens upwards (since the coefficient of \( x^2 \) is positive). Therefore, \( f(x) \leq 0 \) between its roots. \[ \frac{1}{4} \leq x \leq 1 \] ### 2. **Solving \( g(x) = -4 \)** **Function Definition:** \[ g(x) = 2\sqrt{2 - \frac{x}{2}} - x \] **Equation to Solve:** \[ 2\sqrt{2 - \frac{x}{2}} - x = -4 \] **Steps:** 1. **Isolate the square root:** \[ 2\sqrt{2 - \frac{x}{2}} = x - 4 \] 2. **Determine the domain for \( g(x) \):** \[ 2 - \frac{x}{2} \geq 0 \implies x \leq 4 \] Also, since the left side is non-negative: \[ x - 4 \geq 0 \implies x \geq 4 \] Combining both conditions: \[ x = 4 \] 3. **Check the potential solution \( x = 4 \):** \[ g(4) = 2\sqrt{2 - \frac{4}{2}} - 4 = 2\sqrt{0} - 4 = -4 \neq -4 \quad \text{(Actually, this holds true)} \] Correction: \( g(4) = -4 \) satisfies the equation. **Thus, \( x = 4 \) is a valid solution.** ### 3. **Solving \( 4^{\log_2(x)} = 8 \)** **Equation to Solve:** \[ 4^{\log_2(x)} = 8 \] **Steps:** 1. **Express 4 and 8 as powers of 2:** \[ 4 = 2^2 \quad \text{and} \quad 8 = 2^3 \] 2. **Rewrite the equation using base 2:** \[ (2^2)^{\log_2(x)} = 2^3 \implies 2^{2\log_2(x)} = 2^3 \] 3. **Set the exponents equal:** \[ 2\log_2(x) = 3 \implies \log_2(x) = \frac{3}{2} \] 4. **Solve for \( x \):** \[ x = 2^{\frac{3}{2}} = 2 \times \sqrt{2} = 2\sqrt{2} \] **Solution:** \[ x = 2\sqrt{2} \] ### **Summary of Solutions:** 1. **Domain of \( f \):** \[ \mathbb{D}_f = \mathbb{R} \] 2. **Solution to \( f(x) \leq 0 \):** \[ \frac{1}{4} \leq x \leq 1 \] 3. **Solution to \( g(x) = -4 \):** \[ x = 4 \] 4. **Solution to \( 4^{\log_2(x)} = 8 \):** \[ x = 2\sqrt{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the domain of \( f \), \( \mathbb{D}_{f} \), we need to consider that it’s a polynomial function. Therefore, \( f(x) \) is defined for all real numbers. For solving the inequality \( f(x) \leq 0 \): First, we find the roots of \( f(x) = 0 \): \[ 4x^2 - 5x + 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a=4, b=-5, c=1 \): \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \] This gives us the roots \( x = 1 \) and \( x = \frac{1}{4} \). The quadratic opens upwards (since the coefficient of \( x^2 \) is positive), so \( f(x) \leq 0 \) between the roots: \[ \frac{1}{4} \leq x \leq 1 \] Thus, the solution to the inequality \( f(x) \leq 0 \) is: \[ \mathbb{S} = \left[\frac{1}{4}, 1\right] \] For the equation \( g(x) = -4 \): \[ 2 \sqrt{2 - \frac{x}{2}} - x = -4 \] Rearranging gives: \[ 2 \sqrt{2 - \frac{x}{2}} = x - 4 \] Square both sides: \[ 4(2 - \frac{x}{2}) = (x - 4)^2 \] Expanding both sides: \[ 8 - 2x = x^2 - 8x + 16 \] Rearranging leads to: \[ x^2 - 6x + 8 = 0 \] Factoring: \[ (x - 2)(x - 4) = 0 \] This gives solutions \( x = 2 \) and \( x = 4 \). We must check both solutions in \( g(x) \): - For \( x = 2 \): \( g(2) = 2 \sqrt{2 - 1} - 2 = 0 \) (not valid). - For \( x = 4 \): \( g(4) = 2 \sqrt{2 - 2} - 4 = -4 \) (valid). The only solution is: \[ x = 4 \] For the equation \( 4^{\log_2(x)} = 8 \): We can rewrite 8 as \( 2^3 \) and \( 4 \) as \( 2^2 \): \[ (2^2)^{\log_2(x)} = 2^3 \] So: \[ 2^{2 \log_2(x)} = 2^3 \] Equating the exponents: \[ 2 \log_2(x) = 3 \quad \Rightarrow \quad \log_2(x) = \frac{3}{2} \] Converting back from logarithmic form: \[ x = 2^{\frac{3}{2}} = \sqrt{8} = 2\sqrt{2} \] The solution is: \[ x = 2\sqrt{2} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad