Pregunta
upstudy study bank question image url

Consider the following system of linear inequalities and corresponding graph: \( \begin{array}{l}y \geq 2 x-4 \\ x>-3 \\ y<5\end{array} \)

Ask by Macdonald Klein. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The feasible region is the area on the graph where all three inequalities \( y \geq 2x - 4 \), \( x > -3 \), and \( y < 5 \) are satisfied simultaneously. It is a trapezoidal area bounded by the lines \( y = 2x - 4 \), \( x = -3 \), and \( y = 5 \).

Solución

Certainly! Let's analyze and graph the given system of linear inequalities: \[ \begin{cases} y \geq 2x - 4 \\ x > -3 \\ y < 5 \end{cases} \] ### Step 1: Graph the Boundary Lines 1. **First Inequality: \( y \geq 2x - 4 \)** - **Boundary Line:** \( y = 2x - 4 \) (a **solid** line because the inequality is \(\geq\)) - **Slope (m):** 2 - **Y-intercept (b):** \(-4\) 2. **Second Inequality: \( x > -3 \)** - **Boundary Line:** \( x = -3 \) (a **dashed** vertical line because the inequality is \(>\)) 3. **Third Inequality: \( y < 5 \)** - **Boundary Line:** \( y = 5 \) (a **dashed** horizontal line because the inequality is \(<\)) ### Step 2: Plot Each Boundary Line 1. **Plotting \( y = 2x - 4 \):** - Start at \( (0, -4) \) on the y-axis. - Use the slope to find another point: from \( (0, -4) \), rise 2 units and run 1 unit to the right to reach \( (1, -2) \). - Draw a **solid** line through these points. 2. **Plotting \( x = -3 \):** - Draw a **dashed** vertical line crossing the x-axis at \(-3\). 3. **Plotting \( y = 5 \):** - Draw a **dashed** horizontal line crossing the y-axis at \(5\). ### Step 3: Determine the Shaded Regions 1. **For \( y \geq 2x - 4 \):** - Shade **above** the line \( y = 2x - 4 \). 2. **For \( x > -3 \):** - Shade **to the right** of the line \( x = -3 \). 3. **For \( y < 5 \):** - Shade **below** the line \( y = 5 \). ### Step 4: Identify the Feasible Region The **feasible region** is where all shaded areas overlap. This region satisfies all three inequalities simultaneously. ### Step 5: Find Intersection Points (Vertices) To better understand the feasible region, let's find where the boundary lines intersect: 1. **Intersection of \( y = 2x - 4 \) and \( y = 5 \):** \[ 2x - 4 = 5 \\ 2x = 9 \\ x = 4.5 \\ \Rightarrow (4.5, 5) \] 2. **Intersection of \( y = 2x - 4 \) and \( x = -3 \):** \[ y = 2(-3) - 4 = -6 - 4 = -10 \\ \Rightarrow (-3, -10) \] 3. **Intersection of \( y = 5 \) and \( x = -3 \):** \[ \Rightarrow (-3, 5) \] ### Step 6: Sketch the Graph While I can't provide a visual plot here, here's a description to help you sketch it: 1. **Draw the axes** with appropriate scales. 2. **Plot the boundary lines**: - Draw a solid line for \( y = 2x - 4 \). - Draw a dashed vertical line at \( x = -3 \). - Draw a dashed horizontal line at \( y = 5 \). 3. **Shade the regions**: - Shade above the solid line \( y = 2x - 4 \). - Shade to the right of the dashed line \( x = -3 \). - Shade below the dashed line \( y = 5 \). 4. **Identify the overlapping area**, which is bounded: - **On the left** by \( x = -3 \). - **Below** by \( y = 2x - 4 \). - **Above** by \( y = 5 \). This overlapping (feasible) region represents all the points \((x, y)\) that satisfy all three inequalities simultaneously. ### Step 7: Analyze the Feasible Region - **Boundaries:** - The vertical boundary \( x = -3 \) limits the region to \( x > -3 \). - The line \( y = 2x - 4 \) serves as the lower boundary. - The horizontal line \( y = 5 \) serves as the upper boundary. - **Vertices (Corner Points):** - Intersection of \( y = 2x - 4 \) and \( x = -3 \): \((-3, -10)\) - Intersection of \( y = 2x - 4 \) and \( y = 5 \): \((4.5, 5)\) - Intersection of \( y = 5 \) and \( x = -3 \): \((-3, 5)\) These vertices can be useful for optimization problems or further analysis within the feasible region. ### Summary The solution to the system of inequalities is the set of all points \((x, y)\) that lie: - **To the right** of \( x = -3 \). - **Above** the line \( y = 2x - 4 \). - **Below** the line \( y = 5 \). This region is a trapezoidal area on the coordinate plane bounded by the lines mentioned above.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The given system of linear inequalities represents a region in the Cartesian plane that we can visualize! The inequality \( y \geq 2x - 4 \) describes a line with a slope of 2, where the area above the line is included in the solution. The constraint \( x > -3 \) limits the region to the right of the vertical line at \( x = -3 \). Finally, the inequality \( y < 5 \) restricts the area to below the horizontal line at \( y = 5 \). The intersection of these regions gives you a polygonal area that satisfies all conditions, which can be a fun challenge to sketch! When solving systems like this, it's easy to misinterpret the inequalities. A common mistake is to forget that the boundary lines are "included" or "not included" based on whether the inequality is <= or < . For instance, in the case of \( y < 5 \), the line itself isn't included in the solution. Ensure you clearly differentiate between solid and dashed lines when graphing—solid for inequalities including equalities (like \( \geq \)) and dashed for strict inequalities (like <) to avoid overlaps in your solution interpretation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad