LCTIVITIESIASSESSMENTS L. 2 Calculate the sum of the first 12 terms of the geometric sequence \( \frac{1}{4} ;-\frac{1}{2} ; 1 \); L 3 Calculate \( \sum_{m=3}^{11} 8\left(\frac{1}{2}\right)^{m-4} \) L. 4 Determine \( m \) if: \( \sum_{p=1}^{m}(-8)\left(\frac{1}{2}\right)^{p-1}=-15 \frac{3}{4} \) L. 5 What is the least value of \( p \) for which the series \( \sum_{k=1}^{p} \frac{1}{16}(2)^{k-2}>31 \) ?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The concept of a geometric sequence dates back to ancient civilizations like the Babylonians and Greeks, who recognized the pattern in taking a fixed ratio between terms. For instance, in your sequence, the common ratio is \(-2\), which leads to exciting patterns and relationships in mathematics. By summing the first 12 terms, you not only get a taste of this mathematical elegance but also glimpse how these sequences relate to exponential functions! If you're tackling these tasks, a handy tip is to remember that geometric series can often be simplified using the formula \( S_n = a \frac{1 - r^n}{1 - r} \). However, make sure to pay close attention to sign and value changes in your series, particularly with negative ratios! Miscalculating the signs or forgetting to adjust for the first term can lead to a wild goose chase through your math!