Pregunta
upstudy study bank question image url

9 Formula 1 point A bank account pays an annual interest rate of \( 21 \% \) with annual compounding. If you deposit \( \$ 8,000 \) today, how much will you have in the account 13 year from today? Round your answer to the nearest penny. Type your answer_

Ask by Powell Garrett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 13 years, the account will have approximately \$95,345.41.

Solución

To calculate the future value of the deposit in the bank account after 13 years with an annual interest rate of 21% compounded annually, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Where: - \( A \) is the future value of the deposit - \( P \) is the principal amount (initial deposit) - \( r \) is the annual interest rate (21% in this case) - \( n \) is the number of times the interest is compounded per year (1 for annual compounding) - \( t \) is the time in years Given: - \( P = \$8,000 \) - \( r = 21\% = 0.21 \) - \( n = 1 \) (annual compounding) - \( t = 13 \) years Substitute the values into the formula: \[ A = 8000 \left( 1 + \frac{0.21}{1} \right)^{1 \times 13} \] Now, we can calculate the future value of the deposit after 13 years. Calculate the value by following steps: - step0: Calculate: \(8000\left(1+0.21\right)^{13}\) - step1: Add the numbers: \(8000\times 1.21^{13}\) - step2: Convert the expressions: \(8000\left(\frac{121}{100}\right)^{13}\) - step3: Simplify: \(8000\times \frac{121^{13}}{100^{13}}\) - step4: Rewrite the expression: \(1000\times 8\times \frac{121^{13}}{100^{13}}\) - step5: Rewrite the expression: \(10^{3}\times 8\times \frac{121^{13}}{10^{26}}\) - step6: Reduce the numbers: \(8\times \frac{121^{13}}{10^{23}}\) - step7: Rewrite the expression: \(8\times \frac{121^{13}}{2^{23}\times 5^{23}}\) - step8: Rewrite the expression: \(2^{3}\times \frac{121^{13}}{2^{23}\times 5^{23}}\) - step9: Reduce the numbers: \(1\times \frac{121^{13}}{2^{20}\times 5^{23}}\) - step10: Multiply the fractions: \(\frac{121^{13}}{2^{20}\times 5^{23}}\) The future value of the deposit after 13 years with an annual interest rate of 21% compounded annually is approximately $95,345.41. Rounding to the nearest penny, the amount in the account 13 years from today will be $95,345.41.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the future value of a bank account with annual compounding interest, you can use the formula: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit or investment). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed. For your case: - \( P = 8000 \) - \( r = 0.21 \) (21% as a decimal) - \( n = 13 \) Plugging in these values: \[ A = 8000(1 + 0.21)^{13} \] \[ A = 8000(1.21)^{13} \] \[ A \approx 8000 \times 11.375 \] \[ A \approx 91000 \] So, rounding to the nearest penny, you will have approximately **$91,000.00** in the account 13 years from today.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad