Pregunta
upstudy study bank question image url

What is the \( x \)-intercept of the graph of \( f(x)=\log _{3}(x+4) \) ? a.) \( (-4,0) \) b.) \( (-3,0) \) c.) \( (1,0) \) d.) \( (0,0) \)

Ask by Lewis Stephens. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( x \)-intercept is \( (-3, 0) \).

Solución

To find the \( x \)-intercept of the function \( f(x) = \log_3(x + 4) \), we need to determine the value of \( x \) when \( f(x) = 0 \). 1. **Set the function equal to zero:** \[ \log_3(x + 4) = 0 \] 2. **Convert the logarithmic equation to its exponential form:** \[ 3^0 = x + 4 \] \[ 1 = x + 4 \] 3. **Solve for \( x \):** \[ x = 1 - 4 \] \[ x = -3 \] 4. **Determine the \( x \)-intercept:** The \( x \)-intercept is the point where the graph crosses the \( x \)-axis, which occurs at \( (x, 0) \). Substituting \( x = -3 \), we get: \[ (-3, 0) \] **Answer:** **b.) \( (-3,0) \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the \( x \)-intercept of the graph of \( f(x) = \log_{3}(x+4) \), we need to determine when \( f(x) = 0 \). Setting the equation equal to zero, we get: \[ \log_{3}(x+4) = 0 \] This implies that \( x + 4 = 3^0 \), which simplifies to \( x + 4 = 1 \). Solving for \( x \) gives us \( x = 1 - 4 = -3 \). Therefore, the \( x \)-intercept is \( (-3, 0) \). Thus, the correct answer is b.) \( (-3,0) \). The beauty of logarithmic functions is that they can show us the relationship between various mathematical concepts in a fun way! By exploring their properties, you discover how they can relate exponentials and even real-world situations, like measuring the intensity of earthquakes (on the Richter scale) or measuring sound levels (decibels). For those intrigued by logarithms, consider diving deeper into their history! Developed in the early 17th century, logarithms revolutionized calculations, allowing mathematicians to simplify multiplicative processes into additions. John Napier, who introduced logarithms, would probably be amazed at how his invention still plays a crucial role in various fields today!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad