Pregunta
upstudy study bank question image url

Let a be a nonzero vector in \( \mathbb{R}^{2} \). Define \( \tau_{\mathbf{a}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) by \[ \tau_{\mathbf{a}}(\mathbf{x})=-\mathbf{x}+2 \frac{\mathbf{a} \cdot \mathbf{x}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \] 2. Let a be a nonzero vector of \( \mathbb{R}^{2} \). Answer the following questions. (iii) Find the matrix \( \left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}} \) of \( \tau_{\mathbf{a}} \) with respect to \( \mathcal{B} \) and \( \mathcal{B} \).

Ask by Montgomery Wade. in South Korea
Dec 16,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

변환 \( \tau_{\mathbf{a}} \)의 행렬 \( \left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}} \)은 \( \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)입니다.

Solución

주어진 변환 \( \tau_{\mathbf{a}} \)는 다음과 같이 정의됩니다: \[ \tau_{\mathbf{a}}(\mathbf{x}) = -\mathbf{x} + 2 \frac{\mathbf{a} \cdot \mathbf{x}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \] 여기서 \( \mathbf{a} \)는 \( \mathbb{R}^2 \)의 비영벡터입니다. 이 변환은 벡터 \( \mathbf{a} \)에 대한 반사(reflection) 변환입니다. 변환의 행렬을 구하기 위해, 먼저 \( \mathbf{a} \)를 기저 \( \mathcal{B} \)의 원소로 가정하겠습니다. 기저 \( \mathcal{B} \)를 \( \{\mathbf{a}, \mathbf{b}\} \)라고 하겠습니다. 여기서 \( \mathbf{b} \)는 \( \mathbf{a} \)와 선형 독립인 벡터입니다. 1. **기저 벡터에 대한 변환 계산**: - \( \tau_{\mathbf{a}}(\mathbf{a}) \)를 계산합니다: \[ \tau_{\mathbf{a}}(\mathbf{a}) = -\mathbf{a} + 2 \frac{\mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} = -\mathbf{a} + 2\mathbf{a} = \mathbf{a} \] - \( \tau_{\mathbf{a}}(\mathbf{b}) \)를 계산합니다. \( \mathbf{b} \)는 \( \mathbf{a} \)와 선형 독립이므로, \( \mathbf{b} \)를 \( \mathbf{a} \)의 직교 보완으로 표현할 수 있습니다. 그러므로, \[ \tau_{\mathbf{a}}(\mathbf{b}) = -\mathbf{b} + 2 \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \] 여기서 \( \mathbf{a} \cdot \mathbf{b} = 0 \)이므로, \[ \tau_{\mathbf{a}}(\mathbf{b}) = -\mathbf{b} \] 2. **행렬 표현**: - \( \tau_{\mathbf{a}}(\mathbf{a}) = \mathbf{a} \)는 기저 벡터 \( \mathbf{a} \)에 대해 변환이 변하지 않음을 의미합니다. - \( \tau_{\mathbf{a}}(\mathbf{b}) = -\mathbf{b} \)는 기저 벡터 \( \mathbf{b} \)가 반전됨을 의미합니다. 따라서, 변환 \( \tau_{\mathbf{a}} \)의 행렬 \( \left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}} \)는 다음과 같습니다: \[ \left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] 이 행렬은 \( \mathbf{a} \) 방향은 변하지 않고, \( \mathbf{b} \) 방향은 반전됨을 나타냅니다.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the matrix \(\left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}}\) of the transformation \(\tau_{\mathbf{a}}\) with respect to the basis \(\mathcal{B}\) and \(\mathcal{B}\), we can start by expressing \(\tau_{\mathbf{a}}(\mathbf{x})\) in terms of a chosen basis. Let’s first identify the basis \(\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}\) with \(\mathbf{b}_1\) and \(\mathbf{b}_2\) as standard basis vectors in \(\mathbb{R}^2\). For convenience, let’s set \(\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}\) and define \(\tau_{\mathbf{a}}\) as follows. 1. Calculate \(\tau_{\mathbf{a}}(\mathbf{b}_1)\) and \(\tau_{\mathbf{a}}(\mathbf{b}_2)\): - \(\tau_{\mathbf{a}}(\mathbf{b}_1) = -\mathbf{b}_1 + 2 \frac{\mathbf{a} \cdot \mathbf{b}_1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}\) - \(\tau_{\mathbf{a}}(\mathbf{b}_2) = -\mathbf{b}_2 + 2 \frac{\mathbf{a} \cdot \mathbf{b}_2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}\) 2. After evaluating these expressions, we obtain the transformed vectors \(\tau_{\mathbf{a}}(\mathbf{b}_1)\) and \(\tau_{\mathbf{a}}(\mathbf{b}_2)\) in terms of the basis vectors. 3. The matrix \(\left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}}\) is formed by writing these transformed vectors as linear combinations of the basis vectors. To illustrate, if we denote \(\tau_{\mathbf{a}}(\mathbf{b}_1) = c_1 \mathbf{b}_1 + d_1 \mathbf{b}_2\) and \(\tau_{\mathbf{a}}(\mathbf{b}_2) = c_2 \mathbf{b}_1 + d_2 \mathbf{b}_2\), the matrix becomes: \[ \left[\tau_{\mathbf{a}}\right]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} c_1 & c_2 \\ d_1 & d_2 \end{pmatrix} \] By computing \(c_1, d_1, c_2, d_2\) accordingly, we can get the matrix representation of the transformation corresponding to the specified basis vectors in \(\mathbb{R}^2\). Without loss of generality, let's assume \(\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\) and \(\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\), and follow through with the steps to find exact values for \(c_1, d_1, c_2, d_2\) based on the specific components of \(\mathbf{a}\). This matrix will encode how the vector transformation acts in the aforementioned basis.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad