Pregunta
Given the equation \( 4 x^{2}-y^{2}=8 \) that defines \( y \) as a function of \( x \), use implicit differentiation to find the derivative \( \frac{d y}{d x} \). Simplify your answer. \( d y / d x= \)
Ask by Ross Reeves. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{dy}{dx} = \frac{4x}{y}
\]
Solución
To find the derivative \( \frac{dy}{dx} \) using implicit differentiation for the equation \( 4x^{2} - y^{2} = 8 \), follow these steps:
1. **Differentiate both sides with respect to \( x \):**
\[
\frac{d}{dx}(4x^{2}) - \frac{d}{dx}(y^{2}) = \frac{d}{dx}(8)
\]
2. **Compute the derivatives:**
- The derivative of \( 4x^{2} \) with respect to \( x \) is \( 8x \).
- The derivative of \( y^{2} \) with respect to \( x \) is \( 2y \frac{dy}{dx} \) (using the chain rule).
- The derivative of the constant \( 8 \) is \( 0 \).
Substituting these into the equation:
\[
8x - 2y \frac{dy}{dx} = 0
\]
3. **Solve for \( \frac{dy}{dx} \):**
\[
2y \frac{dy}{dx} = 8x \implies \frac{dy}{dx} = \frac{8x}{2y} = \frac{4x}{y}
\]
**Final Answer:**
\[
\frac{dy}{dx} = \frac{4\,x}{\,y}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the derivative \( \frac{dy}{dx} \) using implicit differentiation, start with the equation: \[ 4x^2 - y^2 = 8. \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(4x^2) - \frac{d}{dx}(y^2) = \frac{d}{dx}(8). \] This gives: \[ 8x - 2y\frac{dy}{dx} = 0. \] Now, isolate \( \frac{dy}{dx} \): \[ 2y\frac{dy}{dx} = 8x \] \[ \frac{dy}{dx} = \frac{8x}{2y} \] \[ \frac{dy}{dx} = \frac{4x}{y}. \] So the simplified derivative is: \[ \frac{dy}{dx} = \frac{4x}{y}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium