Pregunta
Find the sum of the following infinite geometric series: \( 5+2.5+1.25+0.625+\ldots \) 8 10 7
Ask by Jimenez Logan. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The sum of the series is 10.
Solución
To find the sum of the infinite geometric series \( 5 + 2.5 + 1.25 + 0.625 + \ldots \), we can use the formula for the sum of an infinite geometric series:
\[
S = \frac{a}{1 - r}
\]
where:
- \( a \) is the first term of the series.
- \( r \) is the common ratio between consecutive terms.
**Step 1: Identify \( a \) and \( r \)**
- The first term \( a = 5 \).
- The common ratio \( r \) can be found by dividing the second term by the first term:
\[
r = \frac{2.5}{5} = 0.5
\]
**Step 2: Apply the formula**
\[
S = \frac{5}{1 - 0.5} = \frac{5}{0.5} = 10
\]
**Conclusion:**
The sum of the infinite geometric series is **10**.
**Answer:** 10
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the sum of the infinite geometric series \( 5 + 2.5 + 1.25 + 0.625 + \ldots \), we first identify the first term \( a \) and the common ratio \( r \). Here, the first term \( a = 5 \), and the common ratio \( r = \frac{2.5}{5} = 0.5 \). The formula for the sum \( S \) of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Substituting the values we have: \[ S = \frac{5}{1 - 0.5} = \frac{5}{0.5} = 10 \] So, the sum of the series is \( \boxed{10} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium