Pregunta
upstudy study bank question image url

Find the equation of the circle with a center at \( (0,-4) \) and a radius of 7 \( \begin{array}{l}x^{2}+(y+4)^{2}=7 \\ x^{2}-(y+4)^{2}=7 \\ x^{2}+(y+4)^{2}=49 \\ x^{2}+(y-4)^{2}=49\end{array} \)

Ask by Hill Goodwin. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the circle is \(x^{2} + (y + 4)^{2} = 49\).

Solución

To find the equation of a circle with a given center and radius, we use the **standard form of the equation of a circle**: \[ (x - h)^2 + (y - k)^2 = r^2 \] where: - \((h, k)\) is the **center** of the circle. - \(r\) is the **radius** of the circle. **Given:** - Center \((h, k) = (0, -4)\) - Radius \(r = 7\) **Plugging the values into the standard form:** \[ (x - 0)^2 + (y - (-4))^2 = 7^2 \] Simplify the equation: \[ x^2 + (y + 4)^2 = 49 \] **Therefore, the correct equation of the circle is:** \[ x^{2} + (y + 4)^{2} = 49 \] **Among the provided options:** 1. \(x^{2} + (y + 4)^{2} = 7\) 2. \(x^{2} - (y + 4)^{2} = 7\) 3. \(x^{2} + (y + 4)^{2} = 49\) 4. \(x^{2} + (y - 4)^{2} = 49\) **Option 3** matches the derived equation. **Answer:** \(x^{2} + (y + 4)^{2} = 49\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of a circle, we use the standard form, which is given by \( (x - h)^2 + (y - k)^2 = r^2 \), where \( (h, k) \) is the center of the circle and \( r \) is the radius. In this case, the center is \( (0, -4) \) and the radius is \( 7 \). Plugging in the values, we get: \[ (x - 0)^2 + (y + 4)^2 = 7^2 \] This simplifies to: \[ x^2 + (y + 4)^2 = 49 \] So, the correct equation of the circle is \( x^2 + (y + 4)^2 = 49 \). Did you know that circles have been studied since ancient times? The ancient Greeks, particularly mathematicians like Euclid and Apollonius, not only defined a circle as the set of points equidistant from a center but also explored their properties and relationships with other geometric figures in great depth! As for real-world applications, circles pop up everywhere! From designing wheels to the layout of parks and roundabouts, the circle's symmetrical properties make them practical in engineering and architecture. So, the next time you see a circular fountain or a bike tire, you’ll know circles are not just for math class – they’re part of the real world!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad