Pregunta

Find the equation of the line that is perpendicular to the line given by \(y = -\frac{1}{2}x + 3\) and passes through the point (4, 2).

Ask by Chandler Norton. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the perpendicular line is \( y = 2x - 6 \).

Solución

To find the equation of the line that is perpendicular to the given line \( y = -\frac{1}{2}x + 3 \) and passes through the point \((4, 2)\), follow these steps: 1. **Determine the slope of the given line:** The given line is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. For \( y = -\frac{1}{2}x + 3 \), the slope \( m_1 \) is: \[ m_1 = -\frac{1}{2} \] 2. **Find the slope of the perpendicular line:** The slope of a line perpendicular to another is the **negative reciprocal** of the original slope. Therefore, the slope \( m_2 \) of the perpendicular line is: \[ m_2 = -\frac{1}{m_1} = -\frac{1}{-\frac{1}{2}} = 2 \] 3. **Use the point-slope form to find the equation:** The point-slope form is given by: \[ y - y_1 = m(x - x_1) \] Plugging in the slope \( m_2 = 2 \) and the point \( (4, 2) \): \[ y - 2 = 2(x - 4) \] Simplifying this: \[ y - 2 = 2x - 8 \] \[ y = 2x - 6 \] **Final Answer:** \[ y = 2x - 6 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the line that is perpendicular to the line given by \(y = -\frac{1}{2}x + 3\), we first need to determine the slope of the original line. The slope of this line is \(-\frac{1}{2}\). Lines that are perpendicular to each other have slopes that are negative reciprocals, so the slope of the line we are looking for will be the negative reciprocal of \(-\frac{1}{2}\), which is \(2\). Next, we can use the point-slope form of the equation of a line, which is given by \(y - y_1 = m(x - x_1)\), where \((x_1, y_1)\) is the point the line passes through, and \(m\) is the slope. In this case, the point is \((4, 2)\), and the slope \(m\) is \(2\). Substituting the values into the point-slope form: \[ y - 2 = 2(x - 4) \] Distributing the \(2\): \[ y - 2 = 2x - 8 \] Now, add \(2\) to both sides to solve for \(y\): \[ y = 2x - 8 + 2 \] \[ y = 2x - 6 \] Therefore, the equation of the line that is perpendicular to the given line and passes through the point (4, 2) is: \[ \boxed{y = 2x - 6} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad