Package \( A \) weighs \( 4 \frac{1}{2} \) pounds. Package \( B \) weighs \( 2 \frac{1}{8} \) pounds more than Package \( A \). What is the total weight of the two packages?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the total weight of the two packages, we first need to calculate the weight of Package \( B \). Package \( A \) weighs \( 4 \frac{1}{2} \) pounds, which can be converted into an improper fraction: \[ 4 \frac{1}{2} = \frac{9}{2} \text{ pounds.} \] Now, \( B \) weighs \( 2 \frac{1}{8} \) pounds more than Package \( A \). We convert \( 2 \frac{1}{8} \) into an improper fraction as well: \[ 2 \frac{1}{8} = \frac{17}{8} \text{ pounds.} \] Now, we find the weight of Package \( B \): \[ \text{Weight of Package } B = \text{Weight of Package } A + 2 \frac{1}{8} = \frac{9}{2} + \frac{17}{8}. \] To add these fractions, we need a common denominator. The least common multiple of \( 2 \) and \( 8 \) is \( 8 \). Convert \( \frac{9}{2} \) to eighths: \[ \frac{9}{2} = \frac{36}{8}. \] Now we can add the weights: \[ \text{Weight of Package } B = \frac{36}{8} + \frac{17}{8} = \frac{53}{8} \text{ pounds.} \] Now, let's calculate the total weight of both packages: \[ \text{Total weight} = \text{Weight of Package } A + \text{Weight of Package } B = \frac{9}{2} + \frac{53}{8}. \] Convert \( \frac{9}{2} \) to eighths again: \[ \frac{9}{2} = \frac{36}{8}. \] Now we can add these: \[ \text{Total weight} = \frac{36}{8} + \frac{53}{8} = \frac{89}{8} \text{ pounds.} \] Converting \( \frac{89}{8} \) into a mixed number: \[ \frac{89}{8} = 11 \frac{1}{8} \text{ pounds.} \] So, the total weight of both packages is \( 11 \frac{1}{8} \) pounds.