Pregunta
upstudy study bank question image url

The movement of the progress bar may be uneven because questions can be worth mo Solve for \( x \) : \( 6 x^{2}-13 x+5=0 \) \( x x=-\frac{1}{3} \) or \( x=-\frac{5}{2} \) \( x=-\frac{1}{2} \) or \( x=\frac{5}{2} \) \( x=\frac{1}{2} \) or \( x=\frac{5}{3} \) \[ \begin{array}{l}x=\frac{5}{3} \\ x\end{array} \]

Ask by Welch Greene. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x=\frac{1}{2} \) and \( x=\frac{5}{3} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To solve the quadratic equation \( 6x^{2}-13x+5=0 \), we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 6 \), \( b = -13 \), and \( c = 5 \). Plugging in these values, we find \( b^2 - 4ac = (-13)^2 - 4 \times 6 \times 5 = 169 - 120 = 49 \). Therefore, \( x = \frac{13 \pm 7}{12} \), leading to the solutions \( x = \frac{20}{12} = \frac{5}{3} \) and \( x = \frac{6}{12} = \frac{1}{2} \). Fun fact: Did you know that quadratic equations date back to ancient civilizations? Babylonian mathematicians were solving equations like this more than 4,000 years ago, and their methods laid the groundwork for the algebra we use today! In real-world applications, solving quadratic equations like this can be crucial for optimizing areas or calculating projectile motion. For example, if you're trying to determine the height of a thrown ball or the area of a garden, knowing how to solve these equations can help you make the best decisions based on your calculations!

preguntas relacionadas

PHIẾU: PHÉP CỘNG, TRỪ PHÂN SỐ HỌ VÀ TÊN:.............................LỚP 8A4 Bài 1. Thực hiện phép tính: a) \( \frac{x-5}{5}+\frac{1-x}{5} \) b) \( \frac{x-y}{8}+\frac{2 y}{8} \) c) \( \frac{x^{2}+1}{x-2}-\frac{1-2 x}{x-2} \) d) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) e) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) f) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) d) \( \frac{5 x y^{2}-x^{2} y}{3 x y}-\frac{4 x y^{2}+x^{2} y}{3 x y} \) e) \( \frac{x+1}{a-b}+\frac{x-1}{a-b}-\frac{x+3}{a-b} \) f) \( \frac{5 x y-4 y}{2 x^{2} y^{3}}+\frac{3 x y+4 y}{2 x^{2} y^{3}} \) h) \( \frac{x^{2}+4}{x-2}+\frac{4 x}{2-x} \) i) \( \frac{2 x^{2}-x y}{x-y}+\frac{x y+y^{2}}{y-x}-\frac{2 y^{2}-x^{2}}{x-y} \) Bài 2: Thực hiện phép tính: a) \( \frac{2 x+4}{10}+\frac{2-x}{15} \) b) \( \frac{x^{2}}{x^{2}+3 x}+\frac{3}{x+3}+\frac{3}{x} \) c) \( \frac{2}{x+y}-\frac{1}{y-x}+\frac{-3 x}{x^{2}-y^{2}} \) d) \( \frac{4}{x+2}+\frac{2}{x-2}+\frac{5 x-6}{4-x^{2}} \); e) \( \frac{1-3 x}{2 x}+\frac{3 x-2}{2 x-1}+\frac{3 x-2}{2 x-4 x^{2}} \); f) \( \frac{x^{2}+2}{x^{3}-1}+\frac{2}{x^{2}+x+1}+\frac{1}{1-x} \) Bài 3. Làm tính trừ các phân thức sau: a) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) b) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) c) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) Bài 4. Làm các phép tính a) \( \frac{x y-1}{2 x-y}-\frac{1-2 x^{2}}{y-2 x} \) b) \( \frac{3 x y^{2}+x^{2} y}{x^{2} y-x y^{2}}-\frac{3 x^{2} y+x y^{2}}{x y(x-y)} \) c) \( \frac{x+9}{x^{2}-9}-\frac{3}{x^{2}+3 x} \) Bài 5. Thực hiện phép tính a) \( \frac{5 x^{2}}{6 x-6 y}-\frac{2 x^{2}}{3 y-3 x} \) b) \( \frac{y}{x y-5 x^{2}}-\frac{25 x-15 y}{25 x^{2}-y^{2}} \) c) \( \frac{1}{2 x-3}-\frac{2}{2 x+3}-\frac{6}{4 x^{2}-9} \) Bài 6. Rút gọn rồi tính giá trị của biểu thức a) \( \frac{x+1}{x-1}-\frac{4 x}{x^{2}-1} \) với \( x=-2 \) b) \( \frac{1}{x y-x^{2}}-\frac{1}{y^{2}-x y} \) với \( x=-5 ; y=\frac{-1}{5} \) Bài 7. Chứng minh biểu thức sau không phụ thuộc vào x : \[ A=\frac{11 x}{2 x-3}-\frac{x-18}{3-2 x} \quad B=\frac{1}{x+1}-\frac{2 x}{x-1}+\frac{x+3}{x^{2}-1} \] Bài 8. Chứng minh biểu thức sau không phụ thuộc vào \( \mathrm{x}, \mathrm{y} \) : \[ D=\frac{2 x+1}{x-2 y}-\frac{5 y+2}{x-2 y}-\frac{y+1}{2 y-x} \quad K=\frac{x+y}{x}-\frac{x}{x-y}+\frac{y^{2}}{x^{2}-x y} \]
Álgebra Vietnam Jan 24, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad