Responder
16) Sakkizburchakning yuzi 12 ga teng.
17) Beshburchakning yuzini topish uchun qo'shimcha ma'lumotlar kerak.
18) AD va DE to'g'ri chiziqlar orasidagi o'tkir burchak 40° ga teng.
19) Uchburchak \( ACE \)ning yuzini topish uchun qo'shimcha ma'lumotlar kerak.
Solución
Solve the equation by following steps:
- step0: Solve for \(S\):
\(S=12\)
Solve the system of equations \( AE=AB; BC=CD; angle A=90; angle C=90; AC=6 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}AE=AB\\BC=CD\\angleA=90\\angleC=90\\AC=6\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}AE=AB\\BC=CD\\eanglA=90\\eanglC=90\\AC=6\end{array}\right.\)
- step2: Solve the equation:
\(\left\{ \begin{array}{l}A=0\\BC=CD\\eanglA=90\\eanglC=90\\AC=6\end{array}\right.\)
- step3: Substitute the value of \(A:\)
\(\left\{ \begin{array}{l}BC=CD\\eangl\times 0=90\\eanglC=90\\0\times C=6\end{array}\right.\)
- step4: Multiply the numbers:
\(\left\{ \begin{array}{l}BC=CD\\0=90\\eanglC=90\\0=6\end{array}\right.\)
- step5: Simplify the expression:
\(\left\{ \begin{array}{l}BC=CD\\0=90\\eanglC=90\end{array}\right.\)
- step6: Calculate:
\(\left\{ \begin{array}{l}A \in \varnothing \\B \in \varnothing \\C \in \varnothing \\D \in \varnothing \\E \in \varnothing \\a \in \varnothing \\g \in \varnothing \\l \in \varnothing \\n \in \varnothing \end{array}\right.\)
- step7: Rewrite:
\((A, B, C, D, E, a, g, l, n) \in \varnothing\)
Solve the system of equations \( angle ACB=100; angle ABC=50; D=AC; E=AC; angle ADE=angle ABC \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}angleACB=100\\angleABC=50\\D=AC\\E=AC\\angleADE=angleABC\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\D=AC\\E=AC\\anglADE=anglABC\end{array}\right.\)
- step2: Substitute the value of \(D:\)
\(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\E=AC\\anglA\times ACE=anglABC\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\E=AC\\anglA^{2}CE=anglABC\end{array}\right.\)
- step4: Substitute the value of \(E:\)
\(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\anglA^{2}CAC=anglABC\end{array}\right.\)
- step5: Simplify:
\(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\anglA^{3}C^{2}=anglABC\end{array}\right.\)
- step6: Solve the equation:
\(\left\{ \begin{array}{l}A=\frac{100}{eanglCB}\\eanglABC=50\\anglA^{3}C^{2}=anglABC\end{array}\right.\)
- step7: Substitute the value of \(A:\)
\(\left\{ \begin{array}{l}eangl\times \frac{100}{eanglCB}\times BC=50\\angl\left(\frac{100}{eanglCB}\right)^{3}C^{2}=angl\times \frac{100}{eanglCB}\times BC\end{array}\right.\)
- step8: Simplify:
\(\left\{ \begin{array}{l}100=50\\\frac{100^{3}}{e^{3}a^{2}n^{2}g^{2}l^{2}CB^{3}}=\frac{100}{e}\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}A \in \varnothing \\B \in \varnothing \\C \in \varnothing \\D \in \varnothing \\E \in \varnothing \\a \in \varnothing \\g \in \varnothing \\l \in \varnothing \\n \in \varnothing \end{array}\right.\)
- step10: Rewrite:
\((A, B, C, D, E, a, g, l, n) \in \varnothing\)
Keling, har bir masalni alohida ko'rib chiqamiz.
### 16) Sakkizburchakning yuzi
Berilgan to'rtburchak ABCD ning yuzi \( S_{ABCD} = 12 \) ga teng. Sakkizburchak ABCDEFGH ning yuzi to'rtburchakning yuziga teng bo'lsa, sakkizburchakning yuzi ham \( S_{ABCDEFGH} = 12 \) bo'ladi.
### 17) Beshburchakning yuzi
Beshburchakda \( AE = AB \), \( BC = CD \) va \( \angle A = \angle C = 90^{\circ} \) bo'lsa, \( AC = 6 \) ga teng. Beshburchakning yuzi uchun formulani qo'llaymiz. Beshburchakni to'rtburchak va uchburchaklarga bo'lishimiz mumkin.
1. \( AB = AE = x \)
2. \( BC = CD = y \)
To'rtburchakning yuzi:
\[
S_{rectangle} = AB \cdot BC = x \cdot y
\]
Uchburchakning yuzi:
\[
S_{triangle} = \frac{1}{2} \cdot AC \cdot AB = \frac{1}{2} \cdot 6 \cdot x
\]
Beshburchakning umumiy yuzi:
\[
S_{ABCDE} = S_{rectangle} + S_{triangle} = x \cdot y + \frac{1}{2} \cdot 6 \cdot x
\]
Bu yerda \( x \) va \( y \) ni aniqlashimiz kerak. Biroq, berilgan ma'lumotlar yetarli emas, shuning uchun bu masalani hal qila olmaymiz.
### 18) Uchburchakdagi burchak
Uchburchakda \( \angle ACB = 100^{\circ} \) va \( \angle ABC = 50^{\circ} \) bo'lsa, \( \angle BAC \) ni topamiz:
\[
\angle BAC = 180^{\circ} - \angle ACB - \angle ABC = 180^{\circ} - 100^{\circ} - 50^{\circ} = 30^{\circ}
\]
Aylana AB va CB tomonlarni D va E nuqtalarda kesadi. AD va DE to'g'ri chiziqlar orasidagi o'tkir burchakni topish uchun:
\[
\angle ADE = 90^{\circ} - \angle ABC = 90^{\circ} - 50^{\circ} = 40^{\circ}
\]
### 19) Uchburchakning yuzi
Uchburchak \( ABC \) ning yuzi \( S_{ABC} = 60 \) ga teng. Agar \( \overrightarrow{BE} = -\frac{1}{2} \overrightarrow{BA} \) bo'lsa, \( A \) nuqtasi \( B \) nuqtasidan \( E \) nuqtasiga nisbatan 2 marta uzoqroq.
Uchburchak \( ACE \) ning yuzi:
\[
S_{ACE} = S_{ABC} - S_{ABE}
\]
Bu yerda \( S_{ABE} \) ni topishimiz kerak. Biroq, berilgan ma'lumotlar yetarli emas, shuning uchun bu masalani hal qila olmaymiz.
Umuman olganda, 16-masala bo'yicha sakkizburchakning yuzi 12 ga teng, 17 va 19-masala uchun esa qo'shimcha ma'lumotlar kerak. 18-masala bo'yicha o'tkir burchak 40° ga teng.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución