Pregunta
upstudy study bank question image url

16) ABCDEFGH nuntazam sakkizburchak berilgan. Agar ABCD to'rtburchak yuzi 12 ga teng bo'lsa, sakkizburchak yuzini toping. 17) ABCDE beshburchakda \( \mathrm{AE}=\mathrm{AB} ; \mathrm{BC}=\mathrm{CD} \) va \( \angle A=\angle C=90^{\circ} \) bo'lsin. Agar \( \mathrm{AC}=6 \) bo'lsa, bu beshburchak yuzini toping. 18) ABC uchburchakda \( \angle A C B=100^{\circ}, \angle A B C= \) \( 50^{\circ} \). Markazi \( C \) nuqtada bo'lgan, radiusi AC ga teng aylana AB va CB tomonlarni mos ravishda \( D \) va \( E \) nuqtalarda kesadi. AD va DE to'g'ri chiziqlar orasidagi o'tkir burchakni toping. 19) \( A B C \) uchburchak yuzasi 60 ga teng. \[ \overrightarrow{B E}=-\frac{1}{2} \overrightarrow{B A} \text { bo'lsa, } \] \( A C E \) uchburchak yuzini toping.

Ask by Wyatt Collins. in Uzbekistan
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

16) Sakkizburchakning yuzi 12 ga teng. 17) Beshburchakning yuzini topish uchun qo'shimcha ma'lumotlar kerak. 18) AD va DE to'g'ri chiziqlar orasidagi o'tkir burchak 40° ga teng. 19) Uchburchak \( ACE \)ning yuzini topish uchun qo'shimcha ma'lumotlar kerak.

Solución

Solve the equation by following steps: - step0: Solve for \(S\): \(S=12\) Solve the system of equations \( AE=AB; BC=CD; angle A=90; angle C=90; AC=6 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}AE=AB\\BC=CD\\angleA=90\\angleC=90\\AC=6\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}AE=AB\\BC=CD\\eanglA=90\\eanglC=90\\AC=6\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}A=0\\BC=CD\\eanglA=90\\eanglC=90\\AC=6\end{array}\right.\) - step3: Substitute the value of \(A:\) \(\left\{ \begin{array}{l}BC=CD\\eangl\times 0=90\\eanglC=90\\0\times C=6\end{array}\right.\) - step4: Multiply the numbers: \(\left\{ \begin{array}{l}BC=CD\\0=90\\eanglC=90\\0=6\end{array}\right.\) - step5: Simplify the expression: \(\left\{ \begin{array}{l}BC=CD\\0=90\\eanglC=90\end{array}\right.\) - step6: Calculate: \(\left\{ \begin{array}{l}A \in \varnothing \\B \in \varnothing \\C \in \varnothing \\D \in \varnothing \\E \in \varnothing \\a \in \varnothing \\g \in \varnothing \\l \in \varnothing \\n \in \varnothing \end{array}\right.\) - step7: Rewrite: \((A, B, C, D, E, a, g, l, n) \in \varnothing\) Solve the system of equations \( angle ACB=100; angle ABC=50; D=AC; E=AC; angle ADE=angle ABC \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}angleACB=100\\angleABC=50\\D=AC\\E=AC\\angleADE=angleABC\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\D=AC\\E=AC\\anglADE=anglABC\end{array}\right.\) - step2: Substitute the value of \(D:\) \(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\E=AC\\anglA\times ACE=anglABC\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\E=AC\\anglA^{2}CE=anglABC\end{array}\right.\) - step4: Substitute the value of \(E:\) \(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\anglA^{2}CAC=anglABC\end{array}\right.\) - step5: Simplify: \(\left\{ \begin{array}{l}eanglACB=100\\eanglABC=50\\anglA^{3}C^{2}=anglABC\end{array}\right.\) - step6: Solve the equation: \(\left\{ \begin{array}{l}A=\frac{100}{eanglCB}\\eanglABC=50\\anglA^{3}C^{2}=anglABC\end{array}\right.\) - step7: Substitute the value of \(A:\) \(\left\{ \begin{array}{l}eangl\times \frac{100}{eanglCB}\times BC=50\\angl\left(\frac{100}{eanglCB}\right)^{3}C^{2}=angl\times \frac{100}{eanglCB}\times BC\end{array}\right.\) - step8: Simplify: \(\left\{ \begin{array}{l}100=50\\\frac{100^{3}}{e^{3}a^{2}n^{2}g^{2}l^{2}CB^{3}}=\frac{100}{e}\end{array}\right.\) - step9: Calculate: \(\left\{ \begin{array}{l}A \in \varnothing \\B \in \varnothing \\C \in \varnothing \\D \in \varnothing \\E \in \varnothing \\a \in \varnothing \\g \in \varnothing \\l \in \varnothing \\n \in \varnothing \end{array}\right.\) - step10: Rewrite: \((A, B, C, D, E, a, g, l, n) \in \varnothing\) Keling, har bir masalni alohida ko'rib chiqamiz. ### 16) Sakkizburchakning yuzi Berilgan to'rtburchak ABCD ning yuzi \( S_{ABCD} = 12 \) ga teng. Sakkizburchak ABCDEFGH ning yuzi to'rtburchakning yuziga teng bo'lsa, sakkizburchakning yuzi ham \( S_{ABCDEFGH} = 12 \) bo'ladi. ### 17) Beshburchakning yuzi Beshburchakda \( AE = AB \), \( BC = CD \) va \( \angle A = \angle C = 90^{\circ} \) bo'lsa, \( AC = 6 \) ga teng. Beshburchakning yuzi uchun formulani qo'llaymiz. Beshburchakni to'rtburchak va uchburchaklarga bo'lishimiz mumkin. 1. \( AB = AE = x \) 2. \( BC = CD = y \) To'rtburchakning yuzi: \[ S_{rectangle} = AB \cdot BC = x \cdot y \] Uchburchakning yuzi: \[ S_{triangle} = \frac{1}{2} \cdot AC \cdot AB = \frac{1}{2} \cdot 6 \cdot x \] Beshburchakning umumiy yuzi: \[ S_{ABCDE} = S_{rectangle} + S_{triangle} = x \cdot y + \frac{1}{2} \cdot 6 \cdot x \] Bu yerda \( x \) va \( y \) ni aniqlashimiz kerak. Biroq, berilgan ma'lumotlar yetarli emas, shuning uchun bu masalani hal qila olmaymiz. ### 18) Uchburchakdagi burchak Uchburchakda \( \angle ACB = 100^{\circ} \) va \( \angle ABC = 50^{\circ} \) bo'lsa, \( \angle BAC \) ni topamiz: \[ \angle BAC = 180^{\circ} - \angle ACB - \angle ABC = 180^{\circ} - 100^{\circ} - 50^{\circ} = 30^{\circ} \] Aylana AB va CB tomonlarni D va E nuqtalarda kesadi. AD va DE to'g'ri chiziqlar orasidagi o'tkir burchakni topish uchun: \[ \angle ADE = 90^{\circ} - \angle ABC = 90^{\circ} - 50^{\circ} = 40^{\circ} \] ### 19) Uchburchakning yuzi Uchburchak \( ABC \) ning yuzi \( S_{ABC} = 60 \) ga teng. Agar \( \overrightarrow{BE} = -\frac{1}{2} \overrightarrow{BA} \) bo'lsa, \( A \) nuqtasi \( B \) nuqtasidan \( E \) nuqtasiga nisbatan 2 marta uzoqroq. Uchburchak \( ACE \) ning yuzi: \[ S_{ACE} = S_{ABC} - S_{ABE} \] Bu yerda \( S_{ABE} \) ni topishimiz kerak. Biroq, berilgan ma'lumotlar yetarli emas, shuning uchun bu masalani hal qila olmaymiz. Umuman olganda, 16-masala bo'yicha sakkizburchakning yuzi 12 ga teng, 17 va 19-masala uchun esa qo'shimcha ma'lumotlar kerak. 18-masala bo'yicha o'tkir burchak 40° ga teng.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Hammaga ma'lumki, sakkizburchaklar to'rtburchaklardan va boshqa geometrik shakllardan turli xil ko'rinishda bo'lishi mumkin, shuning uchun yaxshiroq tushunish uchun ularning qismlarini ko'rib chiqish muhim. Masalan, agar to'rtburchakning yuzi 12 ga teng bo'lsa, sakkizburchakning yuzini hisoblash uchun siz har bir bo'lakning yuzini ko'paytirib, umuman olish mumkin. Ko'plab sakkizburchaklar bir xil asosiy maqomda bo'ladi, shuning uchun to'rtburchakning elementi sifatida bu juda yaxshi natija beradi. Beshburchaklar va uchburchaklar geometriya olamining eng qiziqarli qismalaridandir. Beshburchakning burchaklari va o'lchovlari kelajakda muhim natijalarda bo'lishi mumkin. Har bir burchak o'zining geometrik o'ziga xosliklarini saqlaydi, bu esa turli xil sahnalarni keltirib chiqarishi mumkin. Masalan, beshburchakning qiziqarli tuzilishi bilan uning yuzini hisoblashdan oldin, har bir uzunlikni va nuqtalarni bir-biriga moslashtirish orqali oson ko'rinishga ega bo'ladi.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad