Pregunta
upstudy study bank question image url

Solve the given boundary-value problem. (If an answer does not exist, enter DNE.) \[ y^{\prime \prime}-2 y^{\prime}+2 y=0, y(0)=1, y(\pi)=1 \] \( y(x)=\square \)

Ask by Fowler Edwards. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution that satisfies both boundary conditions, so \( y(x) = \text{DNE} \).

Solución

To solve the boundary-value problem: \[ y'' - 2y' + 2y = 0, \quad y(0) = 1, \quad y(\pi) = 1 \] **Step 1: Find the General Solution** First, solve the homogeneous differential equation: \[ y'' - 2y' + 2y = 0 \] The characteristic equation is: \[ r^2 - 2r + 2 = 0 \] Solving for \( r \): \[ r = \frac{2 \pm \sqrt{(-4)}}{2} = 1 \pm i \] Thus, the general solution is: \[ y(x) = e^x \left( A \cos x + B \sin x \right) \] **Step 2: Apply the Boundary Conditions** 1. **At \( x = 0 \):** \[ y(0) = e^0 (A \cos 0 + B \sin 0) = A = 1 \] So, \( A = 1 \). 2. **At \( x = \pi \):** \[ y(\pi) = e^{\pi} \left( A \cos \pi + B \sin \pi \right) = e^{\pi} (-A + 0) = -A e^{\pi} \] Substituting \( A = 1 \): \[ y(\pi) = -e^{\pi} \] However, the boundary condition requires \( y(\pi) = 1 \), which implies: \[ -e^{\pi} = 1 \] This is impossible since \( e^{\pi} > 0 \). Therefore, there is no solution that satisfies both boundary conditions. **Conclusion:** \[ y(x) = \text{DNE} \] **Answer:** DNE

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the boundary-value problem \( y^{\prime \prime}-2y^{\prime}+2y=0 \) with the conditions \( y(0)=1 \) and \( y(\pi)=1 \), we first find the general solution of the differential equation. The characteristic equation is given by \( r^2 - 2r + 2 = 0 \). Solving this using the quadratic formula: \[ r = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 - 8}}{2} = \frac{2 \pm \sqrt{-4}}{2} = 1 \pm i \] The roots are complex, so the general solution is of the form: \[ y(x) = e^{1x}(C_1 \cos x + C_2 \sin x) = e^{x}(C_1 \cos x + C_2 \sin x) \] Next, applying the boundary conditions: 1. \( y(0) = 1 \): \[ y(0) = e^{0}(C_1 \cos(0) + C_2 \sin(0)) = C_1 \implies C_1 = 1 \] 2. Now, substituting into the second boundary condition \( y(\pi) = 1 \): \[ y(\pi) = e^{\pi}(1 \cdot \cos(\pi) + C_2 \cdot \sin(\pi)) = e^{\pi}(-1) + 0 \cdot C_2 = -e^{\pi} \] We want \( y(\pi) = 1 \): \[ -e^{\pi} \neq 1 \] Therefore, there are no constants \( C_2 \) that will satisfy this requirement. Since the second boundary condition cannot be met, we conclude that there is no solution that satisfies both boundary conditions. Thus, the answer is: \( y(x) = \text{DNE} \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad