Responder
**Question 8:**
- **Values for \( a \) and \( b \) that make the system have no solution:**
- \( a = 1 \)
- \( b \neq -4 \)
**Question 9:**
- **Inverse of Matrix \( A \):**
\[
A^{-1} = \begin{pmatrix} -\frac{3}{2} & -\frac{5}{2} \\ -1 & -2 \end{pmatrix}
\]
**Question 10:**
- **Incomplete question. Please provide the full question for assistance.**
Solución
Sure, let's address each of your questions step by step.
---
### **Question 8**
**Determine the values of** \( a \) **and** \( b \) **so that the system has no solution:**
\[
\begin{cases}
x + y + z = 0 \\
3x - a y - z = 4 \\
x + 5y + 5z = b
\end{cases}
\]
**Solution:**
To determine when the system has no solution, we need to analyze the consistency of the equations. We'll use the method of **Gaussian elimination** to simplify the system.
1. **Write the Augmented Matrix:**
\[
\begin{bmatrix}
1 & 1 & 1 & | & 0 \\
3 & -a & -1 & | & 4 \\
1 & 5 & 5 & | & b \\
\end{bmatrix}
\]
2. **Eliminate \( x \) from Equations 2 and 3:**
- **Row 2 (R2) becomes:** R2 - 3 * R1
\[
R2: 3 - 3(1) = 0,\quad -a - 3(1) = -a-3,\quad -1 - 3(1) = -4,\quad 4 - 0 = 4
\]
- **Row 3 (R3) becomes:** R3 - R1
\[
R3: 1 - 1 = 0,\quad 5 - 1 = 4,\quad 5 - 1 = 4,\quad b - 0 = b
\]
The matrix now looks like:
\[
\begin{bmatrix}
1 & 1 & 1 & | & 0 \\
0 & -a-3 & -4 & | & 4 \\
0 & 4 & 4 & | & b \\
\end{bmatrix}
\]
3. **Analyze the Last Two Equations:**
\[
\begin{cases}
(-a-3) y - 4z = 4 \quad \text{(Equation 2)} \\
4y + 4z = b \quad \text{(Equation 3)}
\end{cases}
\]
For the system to have **no solution**, these two equations must be **parallel** but **inconsistent**. This happens when the ratio of the coefficients of \( y \) and \( z \) is the same, but the ratio of the constants is different.
- **Determine When Coefficients are Proportional:**
\[
\frac{-a-3}{4} = \frac{-4}{4} \Rightarrow \frac{-a-3}{4} = -1 \Rightarrow -a - 3 = -4 \Rightarrow a = 1
\]
- **Check Consistency of Constants:**
From Equation 2 (with \( a = 1 \)):
\[
-4y - 4z = 4 \quad \Rightarrow \quad y + z = -1
\]
From Equation 3:
\[
4y + 4z = b \quad \Rightarrow \quad y + z = \frac{b}{4}
\]
For inconsistency:
\[
\frac{b}{4} \neq -1 \quad \Rightarrow \quad b \neq -4
\]
**Conclusion:**
- **\( a = 1 \)**
- **\( b \neq -4 \)**
When \( a = 1 \) and \( b \) is any real number except \( -4 \), the system has no solution.
---
### **Question 9**
**Find the inverse of** \( \mathrm{A} = \begin{pmatrix} -4 & 5 \\ 2 & -3 \end{pmatrix} \) **using the adjoint method (if it exists).**
**Solution:**
To find the inverse of a \( 2 \times 2 \) matrix using the adjoint (adjugate) method, follow these steps:
1. **Compute the Determinant (\( \det A \)) of Matrix \( A \):**
\[
\det A = (-4)(-3) - (5)(2) = 12 - 10 = 2
\]
Since \( \det A \neq 0 \), the inverse exists.
2. **Find the Adjugate (\( \text{adj}(A) \)) of Matrix \( A \):**
For a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), the adjugate is:
\[
\text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
\]
Applying to \( A \):
\[
\text{adj}(A) = \begin{pmatrix} -3 & -5 \\ -2 & -4 \end{pmatrix}
\]
3. **Compute the Inverse (\( A^{-1} \)) Using the Formula:**
\[
A^{-1} = \frac{1}{\det A} \cdot \text{adj}(A) = \frac{1}{2} \begin{pmatrix} -3 & -5 \\ -2 & -4 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} & -\frac{5}{2} \\ -1 & -2 \end{pmatrix}
\]
**Conclusion:**
\[
A^{-1} = \begin{pmatrix} -\frac{3}{2} & -\frac{5}{2} \\ -1 & -2 \end{pmatrix}
\]
Alternatively, it can be expressed as:
\[
A^{-1} = \frac{1}{2} \begin{pmatrix} -3 & -5 \\ -2 & -4 \end{pmatrix}
\]
---
### **Question 10**
**Incomplete Question**
It appears that **Question 10** was cut off and incomplete:
> 10. Suppose A and B be \( 3 \times 3 \) matrices such that \( \mathrm{A} = \begin{pmatrix} 2 & 0 & 0 \\ -4 & 6 & 0 \\ 0 & -1 & \frac{2}{3} \end{pmatrix} \) and \( |B| = \frac{1}{4} \), then find the ...
Could you please provide the complete question for **Question 10**? This will allow me to assist you accurately.
---
If you have any further questions or need clarification on the solutions provided, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución