Pregunta
upstudy study bank question image url

8. What should be the values of a and b so that the system \( \left\{\begin{array}{l}x+y+z=0 \\ 3 x-a y-z=4 \\ x+5 y+5 z=b\end{array}\right. \) has no solution. 9. Find the inverse of \( \mathrm{A}=\left(\begin{array}{cc}-4 & 5 \\ 2 & -3\end{array}\right) \) (if it exists) using adjoint method? 10. Suppose A and B be \( 3 \times 3 \) matrices such that \( \mathrm{A}=\left(\begin{array}{ccc}2 & 0 & 0 \\ -4 & 6 & 0 \\ 0 & -1 & \frac{2}{3}\end{array}\right) \) and \( |B|=\frac{1}{4} \), then find the

Ask by Mckenzie May. in Ethiopia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 8:** - **Values for \( a \) and \( b \) that make the system have no solution:** - \( a = 1 \) - \( b \neq -4 \) **Question 9:** - **Inverse of Matrix \( A \):** \[ A^{-1} = \begin{pmatrix} -\frac{3}{2} & -\frac{5}{2} \\ -1 & -2 \end{pmatrix} \] **Question 10:** - **Incomplete question. Please provide the full question for assistance.**

Solución

Sure, let's address each of your questions step by step. --- ### **Question 8** **Determine the values of** \( a \) **and** \( b \) **so that the system has no solution:** \[ \begin{cases} x + y + z = 0 \\ 3x - a y - z = 4 \\ x + 5y + 5z = b \end{cases} \] **Solution:** To determine when the system has no solution, we need to analyze the consistency of the equations. We'll use the method of **Gaussian elimination** to simplify the system. 1. **Write the Augmented Matrix:** \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 3 & -a & -1 & | & 4 \\ 1 & 5 & 5 & | & b \\ \end{bmatrix} \] 2. **Eliminate \( x \) from Equations 2 and 3:** - **Row 2 (R2) becomes:** R2 - 3 * R1 \[ R2: 3 - 3(1) = 0,\quad -a - 3(1) = -a-3,\quad -1 - 3(1) = -4,\quad 4 - 0 = 4 \] - **Row 3 (R3) becomes:** R3 - R1 \[ R3: 1 - 1 = 0,\quad 5 - 1 = 4,\quad 5 - 1 = 4,\quad b - 0 = b \] The matrix now looks like: \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -a-3 & -4 & | & 4 \\ 0 & 4 & 4 & | & b \\ \end{bmatrix} \] 3. **Analyze the Last Two Equations:** \[ \begin{cases} (-a-3) y - 4z = 4 \quad \text{(Equation 2)} \\ 4y + 4z = b \quad \text{(Equation 3)} \end{cases} \] For the system to have **no solution**, these two equations must be **parallel** but **inconsistent**. This happens when the ratio of the coefficients of \( y \) and \( z \) is the same, but the ratio of the constants is different. - **Determine When Coefficients are Proportional:** \[ \frac{-a-3}{4} = \frac{-4}{4} \Rightarrow \frac{-a-3}{4} = -1 \Rightarrow -a - 3 = -4 \Rightarrow a = 1 \] - **Check Consistency of Constants:** From Equation 2 (with \( a = 1 \)): \[ -4y - 4z = 4 \quad \Rightarrow \quad y + z = -1 \] From Equation 3: \[ 4y + 4z = b \quad \Rightarrow \quad y + z = \frac{b}{4} \] For inconsistency: \[ \frac{b}{4} \neq -1 \quad \Rightarrow \quad b \neq -4 \] **Conclusion:** - **\( a = 1 \)** - **\( b \neq -4 \)** When \( a = 1 \) and \( b \) is any real number except \( -4 \), the system has no solution. --- ### **Question 9** **Find the inverse of** \( \mathrm{A} = \begin{pmatrix} -4 & 5 \\ 2 & -3 \end{pmatrix} \) **using the adjoint method (if it exists).** **Solution:** To find the inverse of a \( 2 \times 2 \) matrix using the adjoint (adjugate) method, follow these steps: 1. **Compute the Determinant (\( \det A \)) of Matrix \( A \):** \[ \det A = (-4)(-3) - (5)(2) = 12 - 10 = 2 \] Since \( \det A \neq 0 \), the inverse exists. 2. **Find the Adjugate (\( \text{adj}(A) \)) of Matrix \( A \):** For a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), the adjugate is: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Applying to \( A \): \[ \text{adj}(A) = \begin{pmatrix} -3 & -5 \\ -2 & -4 \end{pmatrix} \] 3. **Compute the Inverse (\( A^{-1} \)) Using the Formula:** \[ A^{-1} = \frac{1}{\det A} \cdot \text{adj}(A) = \frac{1}{2} \begin{pmatrix} -3 & -5 \\ -2 & -4 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} & -\frac{5}{2} \\ -1 & -2 \end{pmatrix} \] **Conclusion:** \[ A^{-1} = \begin{pmatrix} -\frac{3}{2} & -\frac{5}{2} \\ -1 & -2 \end{pmatrix} \] Alternatively, it can be expressed as: \[ A^{-1} = \frac{1}{2} \begin{pmatrix} -3 & -5 \\ -2 & -4 \end{pmatrix} \] --- ### **Question 10** **Incomplete Question** It appears that **Question 10** was cut off and incomplete: > 10. Suppose A and B be \( 3 \times 3 \) matrices such that \( \mathrm{A} = \begin{pmatrix} 2 & 0 & 0 \\ -4 & 6 & 0 \\ 0 & -1 & \frac{2}{3} \end{pmatrix} \) and \( |B| = \frac{1}{4} \), then find the ... Could you please provide the complete question for **Question 10**? This will allow me to assist you accurately. --- If you have any further questions or need clarification on the solutions provided, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine when the given system of equations has no solution, the determinant of the coefficient matrix needs to be zero, indicating that the equations are dependent. The values of \( a \) and \( b \) must be chosen such that the overall relationship between the equations falls apart, often when substituting the values leads to a contradictory statement. When finding the inverse of matrix \( A \) using the adjoint method, recall that the inverse exists if the determinant is non-zero. First, compute the determinant of \( A \), and then find the adjoint by switching the elements on the main diagonal and changing the signs of the off-diagonal elements. Divide the adjoint by the determinant to get the inverse. If the determinant is zero, the inverse does not exist.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad