6 The sum of the first three terms in a geometric series is 31 , the sum of the next three terms is 3875 . Find the first term and the common ratio.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let the first term be \( a \) and the common ratio be \( r \). The first three terms of the geometric series are \( a \), \( ar \), and \( ar^2 \). Therefore, the sum of the first three terms can be expressed as: \[ S_1 = a + ar + ar^2 = a(1 + r + r^2) = 31 \] The next three terms are \( ar^3 \), \( ar^4 \), and \( ar^5 \), and their sum is: \[ S_2 = ar^3 + ar^4 + ar^5 = ar^3(1 + r + r^2) = 3875 \] From these equations, we have: 1) \( a(1 + r + r^2) = 31 \) 2) \( ar^3(1 + r + r^2) = 3875 \) Dividing the second equation by the first gives us: \[ \frac{ar^3(1 + r + r^2)}{a(1 + r + r^2)} = \frac{3875}{31} \] This simplifies to: \[ r^3 = \frac{3875}{31} = 125 \] Thus, \( r = \sqrt[3]{125} = 5 \). Now substituting \( r \) back into the first equation to find \( a \): \[ a(1 + 5 + 25) = 31 \] \[ a(31) = 31 \] So, \( a = 1 \). To summarize, the first term is \( \boxed{1} \) and the common ratio is \( \boxed{5} \).